
Decomposing a Multigraph into Split Components

Yung H. Tsin1

1 School of Computer Science
University of Windsor,

Windsor, Ontario, Canada,
Email: peter@uwindsor.ca

Abstract

A linear-time algorithm for decomposing a graph into
split components is presented. The algorithm uses
a new graph transformation technique to gradually
transform the given graph so that every split compo-
nent in it is transformed into a subgraph with very
simple structure which can be easily identified. Once
the split components are determined, the triconnected
components of the graph are easily determined. The
algorithm is conceptually simple and makes one less
pass over the input graph than the existing best
known algorithm which could mean substantial sav-
ing in actual execution time. The new graph trans-
formation technique may be useful in other context.

Keywords: Graph algorithm, depth-first search,
graph-connectivity, 3-vertex-connectivity, triconnec-
tivity, triconnected component, separation pairs, split
components.

1 Introduction

Graph connectivity is a basic property of graph that
is fundamental to the studies of many other topics
such as network reliability, graph drawing, quantum
physics, bioinformatics and social networks. The no-
tion of k-vertex-connectivity and k-edge-connectivity
are two important concepts in graph connectivity. An
undirected connected graph is k-vertex-connected (k-
edge-connected, respectively) if disconnecting it re-
quires the removal of at least k vertices (edges, re-
spectively).

The 1-vertex-connectivity and 1-edge-connectivity
problems are trivial. Tarjan (1972) presented the first
linear-time algorithm for 2-vertex-connectivity (also
called biconnectivity). His algorithm is based on the
graph traversal technique, depth-first search. The al-
gorithm also solves the 2-edge-connectivity problem
in linear time. Gabow (2000) revisited depth-first
search from a different perspective — the path-based
view — and presented new linear-time algorithms for
biconnectivity and 2-edge-connectivity. For 3-vertex-
connectivity (also called triconnectivity), Hopcroft
and Tarjan (1973) presented a linear-time algorithm
that is also based on depth-first search. For 3-edge-
connectivity, a number of linear-time algorithms have
been proposed (Galil et al. 1993, Nagamochi et al.

Copyright c©2012, Australian Computer Society, Inc. This
paper appeared at the 18th Computing: Australasian The-
ory Symposium (CATS 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 128, Julian Mestre, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

1992, Taoka et al. 1992, Tsin 2007, 2009). No linear-
time algorithm is known for k > 3.

Hopcroft and Tarjan (1973) presented the first
linear-time algorithm for triconnectivity. Although
elegant, the paper contains quite a number of minor
but crucial errors which make the algorithm very hard
to understand and implement correctly. Gutwenger
and Mutzel (2001) did an excellent job in listing a
number of such errors and explained how to correct
them. Unfortunately, their explanation for some of
the errors were brief and no detailed explanation on
how to implement the corrected algorithm in linear
time was given. The only way to find that out is to
read the code of their implementation which is avail-
able in Gutwenger et al. (2001). Vo (1983) presented
an algorithm which resembles that of Hopcroft et al.
and gives almost no detail on implementation. Miller
et al. (1992) and Fussell et al. (1993) presented par-
allel triconnectivity algorithms. Although these algo-
rithm are serializable and run in linear time, they are
much more complicated and obviously less efficient
(in terms of actual run-time) then Hopcroft et al. as
they are meant for the PRAMs. Recently, Saifullah
and Ungor (2009) showed that triconnectivity can be
reduced to 3-edge-connectivity in linear time, mak-
ing it possible to use 3-edge-connectivity algorithm
to solve the triconnectivity problem.

In this paper, we present a conceptually simple
linear-time algorithm that uses a new graph transfor-
mation technique to solve the triconnectivity prob-
lem. The idea is similar to that of Tsin (2007) for
solving the 3-edge-connectivity problem. In contrast
with Hopcroft et al., our algorithm does not classify
separation pairs into different types. Moreover, our
algorithm avoids the rather time-consuming construc-
tion of a special adjacent lists structure for the input
graph, hence making one less pass over the graph.
Here, one pass is a process that requires examin-
ing the entire adjacency lists structure representing
the graph, such as performing a depth-first search
over the graph or sorting the edges of the graph
with bucket sort. The graph-transformation tech-
nique could be useful in other context.

2 Definitions

The definitions of most of the graph-theoretic con-
cepts used in this paper are standard and can be
found in Even (1979) or Hopcroft and Tarjan (1973).
We shall only give some important or uncommon def-
initions below.

A graph G = (V,E) consists of a set of vertices V
and a set of edges E. The graph is either undirected
or directed. The graph is a multigraph if it contains
parallel edges (edges with the same end-vertices) and
is a simple graph otherwise. Let U ⊆ V . The sub-

graph of G induced by U, denoted by 〈U〉, is the
maximal subgraph of G whose vertex set is U . The
graph resulting from G after all the vertices in U are
removed is denoted by G − U . A connected graph
G = (V, E) is biconnected if ∀v ∈ V, G − {v} is a
connected graph.

Let G = (V, E) be a biconnected graph and a, b ∈
V . ∀e, e′ ∈ E, let e ∼{a,b} e′ if and only if there
exists a path containing both e and e′ but not a or
b except as a terminating vertex. The binary rela-
tion ∼{a,b} is an equivalence relation in E. There-
fore, the edge set E can be partitioned into equiva-
lence classes E1, E2, . . . , Ek w.r.t. ∼{a,b}. If k ≥ 2,
then {a, b} is a separation pair unless (i) k = 2
and ∃i ∈ {1, 2}, Ei = {(a, b)}, or (ii) k = 3 and
Ei = {(a, b)}, 1 ≤ i ≤ 3. A biconnected graph is
triconnected if it has no separation pair.

Let {a, b} be a separation pair and Ei, 1 ≤ i ≤ k,
be the equivalence classes w.r.t. ∼{a,b}. Let E′ =⋃h

i=1 Ei and E′′ =
⋃k

i=h+1 Ei such that |E′|, |E′′| ≥ 2.
Let G1 = (V1, E

′ ∪{e}) and G2 = (V2, E
′′ ∪{e}) such

that e = (a, b) and V1 (V2, respectively) consists of
the end-vertices of the edges in E′ (E′′, respectively).
The graphs G1 and G2 are called split graphs of G
w.r.t. {a, b}. Replacing G by G1 and G2 is called
splitting G. The new edge e that is added to both
G1 and G2 is called a virtual edge. The virtual edge
identifies the split creating it. It is easily verified that
if G is biconnected, then any split graph of G is also
biconnected. Let G be split into two split graphs, the
splits graph are then split into smaller split graphs,
and so on, until no more splits are possible. Then each
of the resulting split graphs is called a split compo-
nent. A split component is of one of the following
three types: triple bond (a graph consisting of two
vertices and three parallel edges), triangle (a cycle
of length three) and triconnected simple graph.

Let G be a biconnected graph whose set of split
components is B3 ∪ T ∪ G, where B3 is a set of triple
bonds, T is a set of triangles, and G is a set of tricon-
nected simple graphs. Let B be the set of multiple
bonds obtained from B3 by merging triple/multiple
bonds that have common edges until no more merg-
ing is possible. Similarly, let P be the set of polygons
obtained from T by merging triangles/polygons that
have common edges until no more merging is possi-
ble. Then B ∪ P ∪ G is the set of all triconnected
components of G.

The following are some important facts about
depth-first search: the search assigns every vertex v
a depth-first search number, dfs(v), and converts
G into a directed graph, PG, called a palm tree of
G. An edges in PG is either a tree-edge, denoted by
(u → v), or a frond, denoted by (u ↪→ v), where u is
the tail and v is the head. The frond (u ↪→ v) is an
incoming frond of v and an outgoing frond of u.
The tree edges form a rooted spanning tree, T , of G.
A subtree of T rooted at vertex w, denoted by Tw,
is the maximal subgraph of T that is a tree and of
which w is the root. The vertex set of Tw is denoted
by VTw . A path in T leading from u to v is denoted
by u Ã v. When the depth-first search reaches a ver-
tex w, vertex w is called the current vertex of the
search.

A millipede, denoted by T̂0e1T̂1e2T̂2 · · · ekT̂k, is a
graph consisting of a path u0e1u1e2u2 · · · ekuk and a
set of trees, T̂i, 0 ≤ i ≤ k, such that each T̂i is of
height at most 1 and is rooted at ui (Figure 1).

The path is the spine while the edges in the trees
are the legs of the millipede. Vertices u0 and uk are
the terminating vertices of the millipede. When

1T
∧

T3
∧

T4
∧

T2
∧

T5
∧

Figure 1: A millipede

T̂0 is a null tree, the millipede can be denoted by
e1T̂1e2T̂2 · · · ekT̂k. We are interested in millipedes in
which every edge is a superedge. A superedge e is
an edge associated with a set of edges, denoted by ẽ,
that are tree edges or fronds of the palm tree PG. A
supergraph is a graph whose edges are superedges.
An outgoing frond of a superedge e is a frond
(x ↪→ y) such that x is an end-vertex of some edge in ẽ
but not of e while y is not an end-vertex of any edge in
ẽ. An outgoing frond of a millipede is an outgoing
frond of a superedge or of a vertex (excluding the two
terminating vertices) in the millipede. The set of all
outgoing fronds of a vertex u, of a superedge e and
of a millipede P̂ are denoted by Out(u), Out(e)
and Out(P̂), respectively. An edge (as oppose to
superedge) of a millipede is an edge of G that is
either an edge in a superedge or an outgoing frond of
the millipede.

Initially, the palm tree PG created by a depth-first
search can be regarded as a supergraph in which ẽ =
{e}, ∀e ∈ E. During the execution of our algorithm,
PG(= P 0

G) is transformed gradually into a sequence
of supergraphs P 1

G, P 2
G, . . . , Rq

G such that every split
component in P q

G corresponds to a split component
of the input graph G and vice versa. Specifically,
P j

G, 0 ≤ j < q, is transformed into P j+1
G either by

splitting it into two or three subgraphs, or by having
two superedges coalesced into one superedge. Both
transformations occur on a millipede in P j

G. Notice
that even though PG is a directed graph, we shall
regard it as the undirected graph G in which every
edge is classified as either a tree-edge or a frond. As a
result, all of the definitions for undirected graph given
above apply equally well to PG as well as P j

G, 1 ≤ j ≤
q. However, as the tails of the outgoing fronds of the
superedges are not vertices in P j

G, the definition of the
equivalence relation, ∼{a,b}, in P j

G must be modified
accordingly: e ∼{a,b} e′ if and only if there is a path
for which each of e and e′ is either an edge on it or
an outgoing frond of a superedge on it and neither a
nor b is an internal vertex. Similarly, the definition of
path is modified as follows: a path in P j

G, 0 ≤ j ≤ q,
is a sequence of edges e1e2 . . . ek such that either ei
and ei+1 share a common end-vertex or one of them
is an outgoing frond of the other. The following terms
were first introduced in (Hopcroft and Tarjan 1973).

∀w ∈ V ,
low1(w) = min({dfs(w)} ∪ {dfs(u)|∃(w ↪→ u)} ∪

{low1(u)|u ∈ C(w)});
low2(w) = min({dfs(w)}∪[({dfs(u)|∃(w ↪→ u)}∪

{low1(u)|u ∈ C(w)} ∪ {low2(u)|u ∈ C(w)})
−{low1(w)}]),

where C(w) is the set of children of w.

3 The triconnectivity algorithm

Given an undirected multigraph G = (V,E). If G
contains parallel edges, we can follow Hopcroft and
Tarjan (1973) to separate them, creating a set of triple
bonds and a simple graph G′ without parallel edges.
If G′ is not biconnected, we can use the biconnectivity
algorithm of Tarjan (1972) to decompose G′ into a
collection of biconnected components. Hence, in the
following discussion, we shall assume without loss of
generality that the graph G is biconnected and simple.

Since G is biconnected, it is easily verified that if
{x, y} is a separation pair, then one of the two vertices
is an ancestor of the other in the depth-first search
tree (see Hopcroft and Tarjan (1973)). The basic idea
underlying our algorithm is as follows. In Figure 2(a)
and (b), it is obvious that the vertex pair {a, b} is a
separation pair and the triangle ae1we2be

′a, where e′
is a virtual edge, is a split component. Clearly, not ev-
ery split component is of that simple structure. Our
algorithm will transform the graph during a depth-
first search gradually so that every split component
is transformed into a millipede whose spine consists
of two or more superedges (the a − b path in Figure
3(a), (b)) such that no outgoing edge of the superedges
or of the internal vertices on the millipede has its
other end-vertex outside the millipede. This condi-
tion will be detected when the search backtracks to
one of the end-vertices (vertex a in Figure 3(a), (b)).
A split component will then be created.

Two transformation operations will be used by our
algorithm to transform the given graph G (or more
precisely the palm tree PG) gradually into a collec-
tions of split components. The first one is called split
which will be used to separate a millipede from the
supergraph to which it belongs so as to produce a
split component.

The second one is called coalesce which is to be
applied to a millipede whose spine consists of two su-
peredges after the internal vertex of the spine has
been confirmed to be unable to form new separa-
tion pair. Specifically, let e1T̂1e2 be a millipede in
which the spine is u0u1u2, where e1 = (u0, u1) and
e2 = (u1, u2). When a coalesce operation is applied
to the millipede, the millipede is replaced by a new
superedge e′1 = (u0, u2) such that ẽ′1 consists of the
edges of the superedges in the millipede while Out(e′1)
consists of the outgoing edges of the millipede (if an
outgoing edge becomes an internal edge of e′1, it is
included in ẽ′1 rather than Out(e′1)). The coalesce
operation can be easily extended to millipedes having
more that two superedges on its spine.

The following is a brief description of the algo-
rithm. For ease of explanation, we shall use low1(u)
and y interchangeably if dfs(y) = low1(u).

First, starting from an arbitrary vertex r, a depth-
first search is performed over the graph G to construct
a palm tree PG of G. During the search, at each vertex
u, low1(u) and low2(u) are computed. If there is a
child v of u such that low1(v) = low1(u), then among
all these children, one of them is made the first child
of u. If there is no such a child v of u, then an outgoing

⇒

1

b

a

w

1e

2e

1

b

a

b

a

1e

2e
e’

w

e’

(b)

b

a

⇒w

1e

2e

b

a

e’

b

a

w

1e

2e

e’

(a)

Figure 2:

frond of u, u ↪→ y, such that dfs(y) = low1(u) is made
the first frond of u. A first descendant of vertex
u is the first child of u of a first descendant of the first
child of u.

A second depth-first search is then performed over
PG. Recall that PG can be regarded as the graph G
with every edge in it being classified as tree-edge or
frond.

During this search, at each vertex u, the first in-
cident edge traversed is the one connecting the first
child or the first frond if the first child does not ex-
ist. When the search backtracks from a vertex u to
the parent vertex w, the subgraph of G consisting
of the edge set of 〈VTu〉 and the fronds that have an
end-vertex in Tu has been transformed into a graph
consisting of a set of split components and a millipede
P̂u : T̂0e1T̂1 · · · ekT̂k, called the u-millipede, with the
following properties: (Figure 4(i))
(i) the spine of the millipede u0u1 . . . uk is such that

u0 = u; ui+1 is a first descendant of ui, 0 ≤ i < k,
and uk has an outgoing frond f = (uk ↪→ y) such
that dfs(y) = low1(u). Furthermore, if k > 0,
then ekT̂k or vertex uk has an outgoing frond
f ′ = (x′ ↪→ y′) such that y′ is an internal vertex
of the path low1(u) Ã u.

(ii) for every superedge e in P̂u, ẽ consists of all
the edges that have an end-vertex in Tu and are
known to be belonging to the same split compo-
nent as e;

(iii) for every outgoing frond f = (x ↪→ y) of
P̂u (including the terminating vertex uk), either
dfs(y) < dfs(u) or f = (ui ↪→ ui−1), for some
i, 1 ≤ i ≤ k.

Let P̂ : e0T̂0e1T̂1 · · · ekT̂k be the millipede result-
ing from concatenating the superedge e0 = (w → u)

e’

b

a

(a)

⇒
a

b
⇒

a

b

e’

⇒

e’

e’

b

a

a

b

(d)

b

a

(b)

Figure 3:

with P̂u. If there is no outgoing frond of e0T̂0e1 whose
head is outside e0T̂0e1, then {w, u1} is a separation
pair and the edges in e0T̂0e1 form a split component
(this corresponds to the situation depicted in Fig-
ure 3(a)). The section e0T̂0e1 on P̂ is then replaced
by a virtual edge e′1 = (w, u1). If there is a frond
f ′ = (u1 ↪→ w), then a triple bond with vertex set
{w, u1} is also created (Figure 4(ii)). Let the updated
P̂ be e′1T̂1e2T̂2 · · · ekT̂k. If the above condition on out-
going frond applies to the section e′1T̂1e2, then a split
component is generated and the section e′1T̂1e2 on P̂
is replaced by a virtual edge. This process is repeated
until the aforementioned condition does not hold. Let
the resulting millipede be e′hT̂heh+1T̂h+1 · · · ekT̂k. Let
P̂ be e′hT̂heh+1T̂h+1 · · · ekT̂kf such that f = (uk ↪→
y), where dfs(y) = low1(uh). If there is no out-
going fronds of P̂ whose head is an internal ver-
tex of the tree-path low1(uh) Ã w and there is at
least one vertex outside VTuh

∪{(w, low1(uh))}, then
{w, low1(uh)} is a separation pair and the entire milli-
pede P̂ is removed to produce a split component (Fig-
ure 4(iii)) (this corresponds to the situation depicted
in Figure 3(b)). A virtual frond e′ = (w ↪→ low1(uh))
is introduced to replace P̂ . If there is already a frond
f ′ = (w ↪→ low1(uh)) in PG, then a triple bond with
vertex set {w, low1(uh)} is also created. On the other
hand, if there is an outgoing fronds of P̂ whose head
is an internal vertex of low1(uh) Ã w, then P̂ is co-
alesced into a superedge e′k = (w, uk) if uh is not a

(ii)⇐

2e

⇐(i)

w

u
1e

3e

f3

f2

f1

f4

f5

f6
f7

f8

f9

f10

f11

4e

5e
6e

5e
6e f7

f8
f9

10e

u
f10

w

f6

f1

f4

f3

f2

f54e

2e

3e

f11

1e

u1

(iii)

⇐

f11

f1

f4

w

u1

f3

f2

f54e

2e

3e
w

f6

u1

w

5e

u1

2

1

1

2

w
w

u1

w

w

f113

4

3

4

2

Figure 4: Generating split components from millipede

first descendant of w. Otherwise, P̂ becomes the w-
millipede P̂w.

After all the children of w are processed, let P̂w be
e′hT̂heh+1T̂h+1 · · · ekT̂k. The incoming fronds of w are
examined. For each incoming frond f = (x ↪→ w), if
f ∈ Out(uj) ∪ Out(ej), h < j ≤ k, then the vertices
ui, h ≤ i < j, can no longer generate separation pair.
The section on P̂w, e′hT̂heh+1 · · · T̂j−1ej , is thus coa-
lesced into a superedge e′j = (w, uj). Similarly, if f is
an outgoing frond of a leg e in some T̂j , h ≤ j ≤ k,
then the section e′hT̂heh+1 · · · ej and the leg e are co-
alesced into a superedge e′j = (w, uj).

When the incoming fronds of w are completely
processed, the w-millipede is finalized. The search
then backtracks to the parent vertex of w unless
w = r; in which case, execution of the algorithm ter-
minates and the splits components are all generated.

The palm tree PG is represented by adjacency lists
A[w], w ∈ V, which are created during the first depth-
first search. Specifically, an entry u in A[w] rep-
resents a tree-edge, (w → u), if dfs(u) > dfs(w)
and represents an outgoing frond of w, (w ↪→ u), if
dfs(u) < dfs(w). The first entry in A[w] is the first
child of w if w has a first child and is the first frond
of w, otherwise. Note that the adjacency lists struc-
ture A[w], w ∈ V , is much simpler than the acceptable
adjacency lists structure used in Hopcroft and Tarjan
(1973) as it does not require the vertices in each list
to be arranged in a particular order. The bucket-sort
is thus avoided. Since this step is rather straightfor-
ward, we shall omit the details.

The second depth-first search is performed over G
based on the adjacency lists A[w], w ∈ V . The split
components are determined during this search. The
details are presented as Algorithm Split-component
below. In the algorithm, w ⊕ P̂ denotes the mille-
pede e1T̂1e2T̂2 · · · ekT̂k if e1 = (w → u1) and P̂ is the
millipede T̂1e2T̂2 · · · ekT̂k. Note that to make the de-
scription of the second search (which is the main part
of our algorithm) self-contained, we have included
the calculations of low1(w), low2(w), ∀w ∈ V, even
though they are calculated during the first search.
Moreover, to efficiently determine if a millipede of
the form e1T̂iei+1 produces a split component, the
following terms are calculated:
∀w ∈ V, low3(w) = min({dfs(w)} ∪

[{dfs(u)|∃(w ↪→ u)} ∪ {low1(u)|u ∈ C(w)− {c1}}],
where c1 is the first child of w.
∀e = (v → w), low3(e) = min({dfs(v)} ∪

{dfs(y)|∃(x ↪→ y) ∈ Out(ẽ)}).
Specifically, for a vertex w, low3(w) is the highest

(closest to the root r) vertex in PG that is connected
to w through a (possibly null) tree path that avoids
the first child of u following by a frond; for a su-
peredge e, low3(e) is the highest vertex in PG that is
connected to w through an outgoing frond of e.

Algorithm Split-components;
Input: The adjacent lists A[w], ∀w ∈ V .
Output: The split components of G = (V,E).
begin

count := 1; mark every vertex as unvisited ;
DFS(r,⊥);

end.

Procedure DFS(w, v);
begin /* Initialization */

mark w as visited ;
dfs(w) := count; count := count + 1;
parent(w) := v; low2(w) := low3(w) := dfs(w);
P̂w := w; Out(w) := ∅; InFrondList(w) := ∅;

1. for each (u ∈ A(w)) do
if (e = (w → u) ∈ ET)̄ then /* a tree edge */

ẽ := {e}; low3(e) = dfs(w);
1.0 DFS(u, w);

/* Check for split components */
1.1 P̂ := Gen SplitComp(w ⊕ P̂u);
1.2 if (u is the first child of w) then

/* P̂ is the w-millipede */
P̂w := P̂ ; low1(w) := low1(u);
low2(w) := min{low2(w), low2(u)};

1.3 else Coalesce(P̂ ,⊥); /*coalesce the entire P̂*/
Add P̂ to the T̂i subtree rooted at w;
/* P̂ becomes a leg of T̂i */
if (low1(u) = low1(w)) then

low2(w) := min{low2(w), low2(u)}
else low2(w) := min{low2(w), low1(u)};
low3(w) := min{low3(w), low1(u)}

else if (e = (w ↪→ u) ∈ E − ET) then
/* e is an outgoing frond */
Add e to Out(w);

/* add e to the list of incoming fronds of u
*/

1.4 Add e to InFrondList(u);
if (e is the first frond of w) then

low1(w) := dfs(u)
else if (dfs(u) > low1(w)) then

low2(w) := min{low2(w), dfs(u)};
low3(w) := min{low3(w), dfs(u)};

else /* e is an incoming frond;
process it in Step 2 below. */

2. for each ((u ↪→ w) ∈ InFrondList(w)) do
2.1 Coalesce(P̂w, u);

end;

Procedure Coalesce(P̂ , u);
begin /* Let P̂ : e1T̂1e2T̂2 · · · ekT̂k. */
if (k = 0) then return; /* P̂ is null */
if (u =⊥) then /* coalesce the entire P̂ */

u := uk; all := true;
/* coalesce the section of P̂ from w to u */
i ← 1;

1. while (i < k ∧ ui+1 ∈ Ans(u)) do
/* coalesce T̂iei+1 into e1 */

ẽ1 := ẽ1 ∪ ẽi+1 ∪ (
⋃

e∈ET̂i

ẽ) ∪Out(ui);

low3(e1) := min{low3(e1), low3(ei+1), low3(ui)};
i ← i + 1;

endwhile;
2. if (u is the tail of an outgoing frond of a leg,

e = (ui, u
′), in T̂i)

then /* coalesce the leg e into e1 */
ẽ1 := ẽ1 ∪ ẽ;
low3(e1) := min{low3(e1), low3(e)};

else if (u is the tail of an outgoing frond of
e = (ui, ui+1))

then /* coalesce e into e1 */
ẽ1 := ẽ1 ∪ ẽ;
low3(e1) := min{low3(e1), low3(e)};

else if (all = true) then
/* coalesce T̂k into e1 as well */
ẽ1 := ẽ1 ∪ (

⋃
e∈ET̂k

ẽ) ∪Out(uk);

low3(e1) := min{low3(e1), low3(uk)};
end; /* of Procedure Coalesce */

Procedure Ḡen SplitComp(P̂);
begin

Let P̂ be e1T̂1e2T̂2 · · · ekT̂k, where e1 = (u0, u1).
i := 1;
if (k > 1) then
/* Check for situation depicted in Fig. 4(ii) */

3.1 while [(i < k)∧
min{low3(ui), low3(ei+1)} ≥ dfs(u0)] do

output(split component:
{e | e is an edge of e1T̂iei+1} ∪ {e′i+1}),
where e′i+1 = (u0, ui+1) is a new virtual edge;

1. if (∃f = (ui+1 ↪→ u0)) then
output(triple bond: {f, e′i+1, e

′′
i+1}),

where e′′i+1 = (u0, ui+1) is a new virtual edge;
replace e1T̂iei+1 in P̂ with e′′i+1;
rename e′′i+1 as e1;

else replace e1T̂iei+1 in P̂ with e′i+1;
rename e′i+1 as e1;

e1 := {e1}; low3(e1) := dfs(u0);
i := i + 1;

endwhile;
/* Check for situation depicted in Fig. 4(iii) */

3.3 if ((low2(ui) ≥ dfs(u0))∧
((parent(u0) 6= r) ∨ (|C(u0)| > 1))) then
/* the 2nd condition indicates there is a

vertex outside P̂ */

output(split component:
{e | e is an edge in P̂ : e1Tiei+1 . . . ekTk}∪

Out(uk) ∪ {e′0}, where
e′0 = (u0 ↪→ low1(ui)) is a new virtual edge;

2. if (∃f = (u0, low1(ui))) then
output(triple bond: {f, e′0, e

′′
0}), where

e′′0 = (u0, low1(ui)) is a new virtual edge;
replace P̂ with the null tree T̂0 with u0

as the root;
relabel f as e′0

else replace P̂ with the null tree T0 with u0
as the root;

Out(u0) := Out(u0) ∪ {e′0};
low3(u0) := min{low3(u0), low1(ui)};

return(P̂);
end;

Lemma 3.1 Let w ∈ V − {r}. During the depth-
first search over PG, when the search backtracks from
w to its parent vertex v, the subgraph of PG con-
sisting of the edge set of 〈VTw

〉 and the fronds that
have an end-vertex in Tw has been transformed into
a set of isolated millipedes and a w-millipede, P̂w :
T̂0e1T̂1 . . . ekT̂k, such that:
(i) u0 = w; ui+1 is a first descendant of ui, 0 ≤ i <

k; ∃f = (uk ↪→ y) such that dfs(y) = low1(w),
and if k > 0, then ∃f ′ = (x′ ↪→ y′) such that x′ ∈
Out(ekT̂k) ∪ Out(uk) and low1(w) < dfs(y′) <
dfs(w);

(ii) ∀f = (x ↪→ y) ∈ Out(P̂w) ∪ Out(uk), either
dfs(y) < dfs(w) or f = (ui ↪→ ui−1), for some
i, 1 ≤ i ≤ k.

Proof: (By induction on the height of w in T)
The base case where w is a leaf is obvious.
Suppose the lemma holds true for every vertex

with height < h(h ≥ 1).
Let w be a vertex with height h and u be a

child of w. Since the height of u is less than
h, by the induction hypothesis, when the depth-
first search backtracks from u to w, the subgraph
of PG consisting of the edge set of 〈VTu〉 and the
fronds that have an end-vertex in Tu has been trans-
formed into a set of isolated millipedes and a u-
millipede satisfying conditions (i) and (ii). Let the
u-millipede be P̂u : T̂1e2T̂2 . . . ekT̂k. Then Procedure
Gen SplitComponent is called to process the milli-
pede w ⊕ P̂u which is P̂ : e1T̂1e2T̂2 . . . ekT̂k, where
e1 = (u0, u1) = (w, u).

Within Procedure Gen SplitComponent, the
while loop is repeated to produce isolated millipedes
until P̂ is reduced to the millipede e1T̂heh+1 . . . ekT̂k,
where either h = k (i.e. P̂ : e1T̂k) or h < k such that
min{low3(uh), low3(eh+1)} < dfs(w). If the condi-
tion in the if statement following the while loop holds
for P̂ , then P̂ is further reduced to the null path and
an isolated millipede is generated based on it.

Now, if u is not the first child of w, then Procedure
Coalesce is invoked to reduce P̂ to a superedge e =
(w, uk) (if P̂ has not become the null path) which
then becomes a leg of P̂w in T̂0.

On the other hand, if u is the first child of w, then
P̂ becomes P̂w. If P̂w has been reduced to a null path,
it clearly satisfies the two conditions.

Suppose P̂w is not a null path. After the adjacency
list of w is completely processed, The incoming fronds
of w are then processed.

Let P̂w : e1T̂heh+1 . . . T̂k−1ekT̂k and e = (u ↪→ w)
be an incoming frond of w. If u is not a descen-
dant of uh, then e is in a leg in T̂0 (rooted at w)
or in a split component that was generated earlier.
It is thus irrelevant. Otherwise, ∃l, h ≤ l ≤ k, such
that e ∈ Out(ul) ∪ Out(el) ∪ Out(ẽ′), where e′ is a
leg in T̂l and the section of P̂w, e1T̂heh+1 . . . T̂l−1el,
is coalesced into a superedge. Moreover, if e ∈
Out(ẽ′), the superedge e′ is coalesced with the afore-
mentioned section of P̂w. When all the incoming
fronds of w are processed, P̂w must have been re-
duced to T̂0e1T̂mem+1 . . . ekT̂k, where h ≤ m ≤ k and
e1 = (w, um) is a new superedge such that ∀f = (x ↪→
y) ∈ Out(P̂w) ∪ Out(uk), if f ∈ Out(e1) ∪ Out(um),
then dfs(y) < dfs(w) or f = (um ↪→ w), and if
f ∈ Out(T̂mem+1 . . . ekT̂k) ∪ Out(uk), then by the
induction hypothesis and the definition of um, ei-
ther dfs(y) < dfs(w) or f = (ui ↪→ ui−1), for some
i,m < i ≤ k. Condition (ii) thus holds for P̂w.

Since P̂w is created from P̂u, where u is the first
child of w, by the induction hypothesis and the defi-
nition of um, it is easily verified that Conditions (i)
holds for P̂w. The lemma thus follows. ¥

The following lemmas and corollary show that
both the split and coalesce operations preserve bi-
connectivity.

Lemma 3.2 Let PG be transformed into a set of iso-
lated millipedes and a supergraph P ′G before a split
operation is applied to a pair of vertices {a, b} of P ′G
in Procedure Gen SplitComp. Let P ′G be split into
an isolated millipede C and a supergraph P ′′G after the
split operation is applied. Then P ′G is biconnected im-
plies P ′′G is biconnected.

Proof: Trivial. ¥
Lemma 3.3 Let PG be transformed into a set of iso-
lated millipedes and a supergraph P ′G before a coalesce
operation is applied at a vertex w of P ′G. Let P ′G be
transformed into P ′′G after the coalesce operation is
applied. Then P ′G is biconnected implies P ′′G is bicon-
nected.

Proof: Omitted ¥
Corollary 1 During an execution of Algorithm
Split-components, let PG be transformed into a set
of isolated millipedes and a supergraph P ′G containing
the root r. PG is biconnected implies P ′G is bicon-
nected.

Proof: Immediate from Lemmas 3.2 and 3.3. ¥
The following three lemmas give simple criteria

(based on the terms low2 and low3) for detecting split
components using the idea illustrated in Figure 3.

Lemma 3.4 Suppose the depth-first search has back-
tracked from a vertex w to its parent vertex v. Let the
millipede v ⊕ P̂w be T̂0e1T̂heh+1 . . . ekT̂k (1 ≤ h ≤ k)
at that point of time.

(i) ∃/ f = (x ↪→ y) such that f ∈ Out(e1T̂heh+1)
and dfs(y) < dfs(v) if and only if the millipede
e1T̂heh+1 forms a split component with {v, uh+1}
as the corresponding separation pair;

(ii) if ∃/ f = (x ↪→ y) such that f ∈
Out(e1T̂heh+1 . . . ekT̂kfk+1), where fk+1 =
(uk ↪→ z) is the first frond of uk, and
dfs(z) < dfs(y) < dfs(v), then the millipede
e1T̂heh+1 . . . ekT̂kfk+1 forms a split component
with {v, z} as the corresponding separation pair.

Proof:
(i) Suppose ∃/ f = (x ↪→ y) such that f ∈
Out(e1T̂heh+1) and dfs(y) < dfs(v). Since by
Lemma 3.1, ∃/ f = (x ↪→ uh) such that f ∈
Out(T̂h+1eh+2T̂h+2 . . . ekT̂k)∪Out(uk). The millipede
e1T̂heh+1 thus forms a split component with {v, uh+1}
as the corresponding separation pair.

The converse is obvious.
(ii) Clearly, dfs(z) = low1(uh). Therefore, ∀f =
(x ↪→ y) such that f ∈ Out(e1T̂heh+1 . . . ekT̂kfk+1),
dfs(y) ≥ dfs(z). By assumption, either dfs(z) ≥
dfs(y) or dfs(y) ≥ dfs(v). Hence, dfs(y) = dfs(z)
or dfs(y) ≥ dfs(v). The lemma thus follows. ¥

Lemma 3.5 In Statement 3.1 of Procedure
Gen SplitComp, min{low3(ui), low3(ei+1)} ≥
dfs(u0) if and only if ∃/ f = (x ↪→ y) ∈ Out(e1T̂iei+1)
such that dfs(y) < dfs(u0).

Proof: Immediate from the definition of low3(ui)
and low3(ei+1). ¥

Lemma 3.6 In Statement 3.3 of Procedure
Gen SplitComp, ((low2(ui) ≥ dfs(u0)) ∧
((parent(u0) 6= r) ∨ (|C(u0)| > 1))) if and only
if ∃/ f = (x ↪→ y) ∈ Out(e1T̂iei+1 . . . ekT̂kfk+1),
where fk+1 = (uk ↪→ z) is the first frond of uk, such
that dfs(z) < dfs(y) < dfs(u0) and there is at least
one vertex outside the millipede.

Proof: The first part follows from the definitions of
low1(ui) and low2(ui) and Lemma 3.1.

Suppose there is a vertex v outside the millipede
e1T̂iei+1 . . . ekT̂kfk+1. If parent(u0) 6= r, then v can
be a vertex on r Ã parent(u0). Otherwise, as G, and
hence PG, is biconnected, the root r must have u0 as
the only child. As a result, vertex v is a descendant
of u0 but not of ui (the child of u0 on the millipede).
It follows that u0 must has another child implying
|C(u0)| > 1. The converse is obvious. ¥

In Procedure DFS, after all the split components
have been generated using the millipede P̂ = w⊕ P̂u,
if vertex u is not the first child of vertex w or there is
a frond e = (x ↪→ w) such that x is a descendant of u,
then the remaining P̂ or the tree path w Ã x (possi-
bly modified) in P̂ is coalesced into a new superedge.
The following lemma provides the justification.

Lemma 3.7 Suppose the depth-first search has back-
tracked from a vertex w to its parent vertex v and PG
has been transformed into a set of isolated millipedes
and a supergraph P ′G. Let the millipede v ⊕ P̂w in
P ′G be e1T̂heh+1 . . . ekT̂k (1 ≤ h ≤ k) after the milli-
pede has been processed by Procedure Gen SplitComp.
If uh is not a first descendent of v or ∃f = (x ↪→
v) ∈ Out(eh+1T̂h+1 . . . ekT̂k) ∪Out(uk), then there is
no vertex z(6= v) on r Ã v such that {uh, z} is a
separation pair in P ′G.

Proof: Omitted. ¥

In executing Algorithm Split-components, when-
ever a split or coalesce operation is performed, the
graph is transformed. Let PG be transformed into a
set of isolated millipedes Mi, 1 ≤ i ≤ p, (including
the triple bonds) and a supergraph P ′G = (V ′, E′).
Suppose P ′G can be further decomposed into a col-
lection of split components Si, 1 ≤ i ≤ q. Let M̃i

(S̃i, respectively) denote the set of edges of G that
are edges of some superedges in Mi (Si, respectively),
and P̃ ′G = {S̃i | 1 ≤ i ≤ q}. The following two lemmas
show that the split and coalesce operations preserve
the split components of G.

Lemma 3.8 Let PG be transformed into a set of iso-
lated millipedes and a supergraph P ′G before a split
operation is applied to a pair of vertices {a, b} of P ′G
in Procedure Gen SplitComp. Let P ′G be split into an
isolated millipede M (possibly including a triple bond)
and a supergraph P ′′G after the split operation is ap-
plied. Then S is a set of separation pairs of P ′′G if
and only if S ∪ {a, b} is a set of separation pairs of
P ′G. Moreover, for the collection of split components
generated by S, P̃ ′G = P̃ ′′G ∪ {M̃}.
Proof: Trivial. ¥

Lemma 3.9 Let PG be transformed into a set of iso-
lated millipedes and a supergraph P ′G before a coalesce
operation is applied at one of the vertices w in P ′G. Let
w → u be the first edge of the millipede to which the
coalesce operation is applied and P ′′G be the resulting
supergraph. If no vertex in P ′G can generate a sepa-
ration pair with u, then S is a set of separation pairs
of P ′′G if and only if it is a set of separation pairs of
P ′G. Moreover, for the collection of split components
generated by S, P̃ ′G = P̃ ′′G.

Proof: Trivial. ¥

Theorem 3.10 Algorithm Split-components decom-
poses a biconnected graph G into split components.
Proof: By induction on the height of the vertices in
T based on Lemmas 3.1, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9. ¥

4 Time complexity

The first depth-first search creates a palm tree PG
of G and constructs an adjacency lists structure for
it. It is easily verified that the adjacency lists can be
constructed in O(|V |+ |E|) time. The second depth-
first search is performed over the palm tree PG by in-
voking Algorithm Split-components. To ensure that
this search runs in O(|V | + |E|) time, the following
issues must be addressed.
i. Performing the coalesce operation:

A millipede T̂0e1T̂1 . . . , ekT̂k is represented by a
linked list u0 − u1 − . . . − uk (representing its spine)
augmented by the following data structures:
•p(v), ∀v ∈ V : the parent of v.
•Out(v), ∀v ∈ V : the outgoing fronds of v. Ini-

tially, Out(v) = ∅, ∀v ∈ V .
•ẽv,∀v ∈ V − {r}, where ev = (p(v) → v). Since

the parent edge of v is unique, ev is determined by v;
ẽv is thus attached to vertex v so that retrieving it
can be done in O(1) time.

Linked lists are used to represent Out(v), v ∈ V,
and ẽv, v ∈ V −{r}, so that coalescing two superedges
can be done in O(1) time. In particular, in coalescing

a millipede e1T̂iei+1 into a superedge, where e1 =
(u0, ui), ei+1 = (ui, ui+1); we let ẽvi+1 := ẽ1 ∪ ẽi+1 ∪
(
⋃

e∈ET̂i

ẽ) ∪ Out(ui), i.e. we let the new superedge
be the parent edge of ui+1.

When a frond f = (x ↪→ u) is retrieved from
InFrondList(u), the section of the u-millipede from
u to ui is to be coalesced into a single superedge,
where ui is such that: (i) ui = x, or (ii) ui =
parent(x), or (iii) ei = (ui−1, ui) contains f as an
outgoing frond. The first two conditions can clearly
be verified in O(1) time each. Note that in the sec-
ond case, f is an outgoing frond of the leg (p(x) → x).
The third condition holds if ui−1 is an ancestor of x
while ui is not. The latter condition can be verified
in O(1) time based on the following well-known fact.

Lemma 4.1 Let v ∈ V and nd(v) be the number of
descendants of v in the depth-first search spanning
tree. Then w is a descendant of v if and only if
dfs(v) ≤ dfs(w) < dfs(v) + nd(v).

Using a recursive definition of nd(v), Procedure
DFS can be easily modified to compute nd(v),∀v ∈ V ,
in O(|V |) time during the depth-first search.

Based on the above discussion, it is easily veri-
fied that the time spent on coalescing a millipede is
propositional to the number of edges in the millipede.
Specifically, we have:

Lemma 4.2 Let P̂ : e1T̂1e2T̂2 . . . ekT̂k be a millipede.
Procedure Coalesce takes O(h +

∑h−1
j=1 |ET̂j

|) time to

coalesce a section of P̂ , e1T̂1e2T̂2 . . . T̂h−1eh, possibly
including a leg in T̂h.

ii. Managing the InFrondLists:
An edge e = (w ↪→ u) is inserted into

InFrondList(u) when it is encountered as an outgo-
ing frond of vertex w in Step 1.4 of Procedure DFS.
Since PG is transformed gradually during the depth-
first search, by the time the search backtracks to u,
the frond e may no longer be an outgoing frond of w
but an outgoing frond of a superedge. To determine
this superedge efficiently, we proceed as follows.

During the second depth-first search, when w be-
comes the current vertex and the frond e = (w ↪→ u)
is being examined, let x be the first vertex on u Ã w
such that p(x) 6= u and x is not the first child of
p(x). If x does not exist, then e is inserted into
InFrondList(u); otherwise, e′ = (x ↪→ u) is inserted
(Figure 5). In the former case, when the search back-
tracks to u, the section on the u-millipede connecting
u with w or u with the head z of the superedge of
which e has become an outgoing frond is to be coa-
lesced, where z is the first vertex on the u-millipede
that is not a proper ancestor of w. In the latter case,
when the search backtracks from x to p(x), the frond
e must be a frond in the x-millipede. Since x is not
the first child of p(x), the entire millipede is coalesced
in Step 1.3, making e an outgoing frond of the su-
peredge e′′ = (p(x) → x). Consequently, when the
search backtracks to u, the section on the u-millipede
connecting u with p(x) or u with the head z of the
superedge of which e has become an outgoing frond
will be coalesced, where z is the first vertex on the
u-millipede that is not a proper ancestor of p(x). Fur-
thermore, since e′′ is the parent edge of x and it was
e′ that was inserted into InFrondList(u) in Step 1.4,
when e′ is retrieved from InFrondList(u) at vertex
u, p(x) and ẽ′′ can be retrieved through vertex x in
O(1) time.

u

w

e’
e

e
e’

u

w

u

w

e’=e

x

x

p(x)

p(x)

Figure 5: Inserting fronds into InFrondList(u)

To determine the vertex x efficiently, Procedure
DFS can be elaborated as follows: a number path(v)
is assigned to every vertex v during the search so that
path(r) = 1; ∀v ∈ V − {r}, path(v) = path(p(v)) if v
is the first child of of its parent p(v), and path(v) =
path(p(v)) + 1, otherwise.

Let w be the current vertex of the depth-first
search. Using the path values, the tree path r Ã w
can be partitioned into h sections so that all the ver-
tices on the ith section, 1 ≤ i ≤ h, have their path
values equal to i. Let e = (w ↪→ u) be an outgo-
ing frond of w encountered in Step 1.4 of Proce-
dure DFS. If path(u) = h or u = p(z), where z is
the first vertex with path(z) = h, then e is inserted
into InFrondList(u). Otherwise, the frond inserted
is f = (x ↪→ u) such that x is the first vertex with
path(x) = path(u) + 1 and u 6= p(x) or x is the first
vertex with path(x) = path(u) + 2 and u = p(z),
where z is the first vertex with path(z) = path(u)+1.

To determine x in O(1) time, a stack fork[2..n] is
maintained so that fork[j] contains the first vertex u
on r Ã w with path(u) = j, 1 ≤ j ≤ h(= path(w)).
The stack is updated as follows: Initially, fork[1] = r.
Whenever the search advances from a vertex w to a
vertex u that is not its first child, u is pushed onto
the stack (u is a potential x). Whenever the search
backtracks from a vertex u to a vertex w such that
u is not the first child of w, the top element of fork
is popped. Clearly, fork[j], 1 ≤ j ≤ h, contains the
vertex, v that is the first vertex with path(v) = j.
Owing to stack fork, we have the following lemma.

Lemma 4.3 Determining and inserting the incom-
ing fronds in InFrondList(u), ∀u ∈ V, takes O(|E|)
time.
Proof: Determining path(u), ∀u ∈ V, takes O(|V |)
time. Maintaining the stack fork also takes O(|V |)
time. Determining x for each frond e based on the
stack takes O(1) time. Since there are |E| − |V | +
1 fronds, determining and inserting the fronds into
InFrondList(u), u ∈ V, thus takes O(|E|) time. ¥

iii. Checking if a split operation can be applied:
∀w ∈ V, low1(w), low2(w), and ∀x ∈ V ∪

E, low3(x), can clearly be determined in O(|E|) time.
During the second depth-first search, a new su-

peredge is created when a path on the spine of a mil-

lipede is coalesced. This happens whenever an in-
coming frond or a child that is not the first child is
discovered at the current vertex of the search. Since
there are a total of |E| − |V | + 1 incoming fronds
and |V | − 1 children, the number of new superedges
created is thus at most |E|. The time spent on calcu-
lating the low3 value for each of these new superedges
is O(k) where k is the number of superedges on the
path coalesced. Since every edge can be coalesced at
most once and there are |E| superedges originally in
PG and at most |E| newly created superedges, the to-
tal time spent on calculating the low3 values of all of
the newly created superedges is thus O(|E|).

By Lemmas 3.4, 3.5 and 3.6, checking if a split
operation can be applied takes O(1) time. Since there
are at most |E| split components, there are at most
|E| checks resulting in a split operation being applied
and 2|V | checks resulting in no split operation being
applied. The total time spent on checking if a split op-
eration can be applied is thus O(|V |+ |E|) = O(|E|).
iv. Determining if a triple bond is to be created:

In Step 1, a triple bond is to be created if ∃f =
(ui+1 ↪→ u0) in PG. This frond, if exists, must
be in InFrondList(u0). Owing to the structure of
A[w], w ∈ V , and the nature of depth-first search, the
fronds are inserted into InFrondList(u0) in descend-
ing order of the dfs number of their tails. Since there
are degin(u0) incoming fronds of u0, the total time
spent on Step 1 to detect and generate triple bonds
is thus

∑
u0∈V O(degin(u0)) = O(|E|).

In Step 2, a triple bond is to be created if ∃f =
(u0 ↪→ lowpt1(ui)). Since the outgoing fronds of u0
are not ordered in A[u0], we need an efficient way to
determine if f exists. This is done as follows: a stack
fstk(u) is maintained at each vertex u. When a frond
f = (w ↪→ u) is encountered at w, if the top entry
of fstk(u) is not w, then w is pushed onto fstk(u)
indicating that a frond (w ↪→ u) has been found. Oth-
erwise, the appearance of w on fstk(u) indicates that
a frond (w ↪→ u) was found earlier. So, a triple bond
{w, u} is created. Similarly, if a virtual edge (w, u) is
created for a split component and w appears at the
top of fstk(u), then a triple bond {w, u} is generated.
Otherwise, w is pushed onto fstk(u). When A[w] is
completely processed, before backtracking to the par-
ent of w, every fstk on which w is the top element is
popped. Since for each vertex u, there are degin(u)
incoming fronds and the tail of each of them is pushed
onto and popped out of fstk(u) at most once, it thus
takes

∑
u∈V O(degin(u)) = O(|E|) time to manipu-

late ftsk(u),∀u ∈ V . Since the total number of edges
in the split components is at most 3|E| − 6 (Hopcroft
and Tarjan (1973)), the number of virtual fronds cre-
ated in Step 2 is thus O(|E|). The total time spent
on detecting and generating triple bonds in Step 2 is
thus O(|E|).
Lemma 4.4 Procedure Gen Splitcomp takes O(|E|)
time to determine all the split-components of G.
Proof: Immediate from the above discussion. ¥
Theorem 4.5 Algorithm Split-components takes
O(|E|) time to generate the split components of G.
Proof: Immediate from Lemmas 4.2, 4.3 and 4.4. ¥

5 Conclusion

We have presented a new linear-time algorithm for
finding the split components, hence the triconnected
components, of an undirected multigraph graph
based on a new graph-transformation technique. The

technique could be useful in other context. More-
over, as depth-first search processes the biconnected
components in a bottom-up manner, the algorithm
can be easily modified so that it would work for
graphs that are not biconnected. The algorithm is
conceptually simple and makes one less pass over the
input graph than the existing best known algorithm
of Hopcroft et al. which could mean substantial
saving in actual execution time. It is thus of practical
interest to implement both algorithms and carry out
an empirical study of their performances.

Acknowledgement
This research is supported by NSERC under grant

NSERC 7811-2009.

References

Even, S. (1979), Graph Algorithms, Computer Science
Press, Potomac, MD.

Fussell, D., Ramachandran, V. and Thurimella, R.
(1993), ‘Finding triconnected components by local
replacement’, SIAM J. Comput. 22 (3), 587–616.

Gabow, H.N. (2000), ‘Path-based depth-first search
for strong and biconnected components’, Inf. Pro-
cess. Lett. 74 (3-4), 107–114.

Galil, Z. & Italiano, G.F. (1991), ‘Reducing edge con-
nectivity to vertex connectivity’, SIGACT News
2, 57–61.

Gutwenger C.& Mutzel, P. (2001), A linear time im-
plementation of SPQR trees, in ‘8th International
Symposium on Graph Drawing (GD00)’, Colonial
Williamsburg, VA, pp. 77–90.

Gutwenger C. & Mutzel, P. (2000),
‘http://www.ogdf.net/doku.php.’

Hopcroft. J.E. & Tarjan, R.E. (1973), ‘Dividing a
Graph into Triconnected Components’, SIAM J.
Computing 2(3), 135–158.

Miller, G.L. & Ramachandran, V. (1992), ‘A new
graph triconnectivity algorithm and its paralleliza-
tion’, Combinatorica 12, 53–158.

Nagamochi, H. & Ibaraki, T. (1992), ‘A Linear Time
Algorithm for Computing 3-Edge-Connected Com-
ponents in a Multigraph’, Japan J. Indust. Appl.
Math. 8, 163–180.

Saifullah, A. and Ungor, A. (2009), A simple al-
gorithm for triconnectivity of a multigraph, in
‘CATS’09 (Computing: The Australasian Theory
Symposium)’, Wellington, New Zealand.

Taoka, S., Watanabe, T. & Onaga, K. (1992), ‘A
Linear Time Algorithm for Computing all 3-Edge-
Connected Components of a Multigraph’, IEICE
Trans. Fundamentals E75 (3), 410–424.

Tarjan, R.E. (1972), ‘Depth-First Search and Linear
Graph Algorithms’, SIAM J. Comput. 1 (2), 146–
160.

Tsin, Y.H. (2007), ‘A Simple 3-edge-connected Com-
ponent Algorithm’, Theory of Computing Systems
40 (2), 125–142.

Tsin, Y.H. (2009), ‘Yet another optimal Algorithm
for 3-edge-connectivity’, Journal of Discrete Algo-
rithms 7(1), 130–146.

Vo, K.P. (1983), ‘Finding triconnected components
of graphs’, Linear and multilinear algebra 13, 119–
141.

