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Abstract

The problems of recognizing series-parallel graphs, plaaar graphs, and generalized series-parallel
graphs have been studied separately in the past. Efficgoriims have been presented. However, none
of the algorithms are certifying. A certifying algorithmngrates, in addition to its answer, a certificate
that can be used by a checker (a separate algorithm) to tieeifyorrectness of the answer. The certificate
is positive if the answer is ‘yes’, and is negative if the a@sis ‘no’. In this paper, a®(|E| + |V |)-time
certifying algorithm that simultaneously determines if altigraph (a graph that may have parallel edges
but not self-loopsyz = (V, E) is series-parallel, outerplanar, or generalized seréggaliel is presented.
The positive certificates are a construction sequence fwstaactingG if G is series-parallel, a general-
ized construction sequence for constructingf G is generalized series-parallel but not series-parallel,
and the edge set of the exterior boundary of an outerplanbeéding ofG if G is outerplanar. The
negative certificates are forbidden subgraphs or forbidtieictures ofs. All these certificates are gen-
erated by making only one pass ovémfter a preprocessing step decompostinto its biconnected
components.

Keywords: graph algorithm, certifying algorithm, recognition algbm, ear-decomposition, depth-first
search, series-parallel graph, outerplanar graph, gézesiaseries-parallel graph, forbidden structure,
certificate, certificate authentication.

1 Introduction

A major problem in software development is the correctnésoftiware. Even after the designers proved
the correctness of their algorithm, there is no guaranteettte algorithm will be implemented correctly
as a program. This is particularly true for non-trivial aligftms as their implementation tends to be error-
prone. To eliminate the bugs (implementation errors) ingfugram, the implementer tests their program
with some test sets. Clearly, it is unlikely that they camnatiate all the bugs with this method. As a
consequence, when a user giveas an input to the program and gets ougpuhey usually cannot tell if
is actually a correct output or is an incorrect output causedn undetected bug in the program.

Kratsch et al. [13] addressed this problem by introducintifgeng algorithms. Acertifying algorithm

is an algorithm that, on input, produces an output with a certificatew that the outputy is correct. By
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checkingw with anauthentication algorithn{a program verifying thatv proves thaty is a correct output
for z), the user is certain thatis the correct output for input. A major merit of this approach is that even
if the program is not bug-free, the user can be confident bigabtitput they received for a particularly input
has not been compromised by a bug. Certifying algorithme haen used in the library LEDA [15].

It has been observed that many graph optimization probleatsare NP-hard for arbitrary graphs can
be solved in polynomial time for some restricted classesapblgs which are of practical interest. Designing
algorithms that are capable of recognizing such restrickasises is of theoretical and practical importance.
These algorithms are calledcognition algorithmsas they return a ‘yes’ if the input graph is in a restricted
class and a ‘no’ otherwise. A number of certifying algorighfor recognizing some classes of graphs have
been proposed [2, 4, 6, 13, 16]. In this paper, we study thegrétion of three classes of graphs: series-
parallel graphs, outerplanar graphs and generalizedssgaigllel graphs. All of them have polynomial-time
algorithms for problems, such as the Hamiltonian cycle j@mband the minimum vertex-cover problem,
which are NP-complete or NP-hard for general graphs [9, 2B, 2

The problem of determining if a graph is series-parallel been studied. Linear-time algorithms were
proposed [20, 26]. These algorithms are based on the failpwroperty of series-parallel graphs: a graph
G is series-parallel if and only if it can be reduced to the clatgpgraphK, by repeatedly applying the
following two operations:(i) replace a vertex of degree two and its two incident edges avitbw edge,
(74) replace two parallel edges with an edge connecting theimoomend-vertices. Since the algorithms
just output a ‘yes’ or ‘no’, they are not certifying. Likevéisa number of linear-time algorithms have been
proposed for recognizing outerplanar graphs. Brehaut{dpgsed two algorithms that both rely heavily
on the planarity testing algorithm of Hopcroft et al. [10Jdaare thus very complicated. Systo et al. [21]
presented a simpler algorithm based on the property thatoabécted graph is outerplanar if and only if it
is a cycle or it can be reduced to a cycle by contracting malqraths to edges. Mitchell [17] presented an
algorithm using the idea that a biconnected outerplanaigean be transformed into a maximal outerplanar
graph which can be recognized by removing vertices of degrestil only two adjacent vertices remain.
Wiegers [27] presented yet another algorithm by removintjoes of degree two or one until an edgeless
graph is obtained. None of the aforementioned algorithrodysre an outerplanar embedding if the graph
is outerplanar and none of them are certifying. It is welbwn that the problem of recognizing outerplanar
graphs can be reduced to that of recognizing planar graghtharresulting algorithm can be made certify-

ing [14]. However, as the algorithm reduces the simple @laear graph recognition problem to the much



complicated planar graph recognition problem, and henes tiee complicated planarity testing algorithm
of Hopcroft et al., it is unnecessarily complicated in conigzn with ours. Besides, it is not obvious as to
how to modify the algorithm so that it would determinéifs series-parallel or generalized series-parallel at
the same time. Wimer and Hedetniemi [29] outlined a recogmilgorithm for generalized series-parallel
graphs. Their algorithm is non-certifying and does notidiggtish generalized series-parallel graphs that are
also series-parallel from those that are not.

Let SP, OP, andGSP be the class of series-parallel graphs, outerplanar grapitsgeneralized series-
parallel graphs, respectively. It is known th@®,SP & GSP, OP £ SP,SP £ OP, andSP N OP # (.
Hence,GSP can be partitioned into four subclasses (Figure 1). In thjzep, we present the first certifying
recognition algorithm that determines if a multigragh= (V, E') is GSP and if it is, to which subclass it
belongs inO(|V| + | E|) time. For instance, if7 € OP \ SP, then two positive certificates are generated for

its membership ilGSP andOP and a negative certificate is generated for its non-memipeirsISP.

generalized series-parallel (GSP)

series-parallel outerplanar

(SP) (OP)

Figure 1: The classeSP, OP andGSP.

Our algorithm also differs from the existing non-certifgialgorithms in the following ways: firstly, the
existing algorithms either use graph contraction techesqto reduce the given graph to a single edge, a
cycle, or an edgeless graph, or reduce the problem to thamdmaph problem. It is not obvious as to how
to modify them to turn them into certifying algorithms. Odgarithm uses depth-first search to decompose
the given graph into a collection of paths based on which #sireld certificates are generated. Secondly, as
is shown in Figure 1, the three classes of graphs are closkdted. Therefore, the algorithms for solving
them should form a cohesive and succinct unit like ours. Thisot the case for existing algorithms as
they were designed independently. Hence, while our algorinakes only one pass over the graph, three
passes are required if existing algorithms are used. Whiodir depth-first-search-base path decomposition

technique might provide a basis for solving other graploithic problems. Tsin [25] has recently used this



technique to develop a certifying algorithm for the 3-edgenectivity problem. The algorithm shares a
characteristic of our algorithm in that it generates thal§esconnected components, a certificate for each
of them, a cactus representation of the cut-pairs if thelgreymot 3-edge-connected, and all the bridges if
the graph is not 2-edge-connected seamlessly by makingomlyass over the input graph.

This paper is organized as follows: Section 2 gives the digfivs. Section 3 presents depth-first-search-
based characterization theorems for biconnected sesiedlgl graphs and outerplanar graphs. Section 4
presents a certifying algorithm for recognizing biconeecseries-parallel graphs and outerplanar graphs.
Section 5 presents the authentication algorithms. Se6tigemeralizes Section 4 to handle non-biconnected
graphs. Section 7 presents a certifying algorithm for recogg generalized series-parallel graphs, SP

graphs and outerplanar graphs, simultaneously.

2 Definitions

An undirected graph is represented Gy= (V, F), whereV is the vertex set and’ is the edge set. An
edge with end-vertices andv is presented byu, v) or (v,u). G is asimplegraph if it contains ngarallel
edges(edges sharing the same end-vertices) saif-loofs (edges whose end-vertices are identicél)is
a multigraphif it may contain parallel edges but not self-loops. Tdegreeof vertexw in GG, denoted by
degc(w), is the number of edges havingas an end-vertex.

A sequence of verticegv; . .. vy is apathif (v;,v;41) € E,0 <i < k, andv;,0 < i < k, are distinct
exceptv, which may be identical tey. The path is aycleif v, = vg andk > 2. The path is awull path
if &k = 0. The path is also called @ — v; pathand verticesyy andv;, are itsterminating verticesvhile
vi, 1 <@ < k—1, are itsinternal vertices A graph isconnectedf for every two vertices; andv, there is an
u — v path. A graph is &reeif it is connected and has no cycle.cAit-vertexin a connected graph is a vertex
whose removal results in a disconnected graph. A connectgahgsbiconnectedf it has no cut-vertex.
A pair of vertices is aeparation pairof a connected graph if their removal results in a discorategtraph
and neither is a cut-vertex. A gragil = (V', E’) is asubgraphof G = (V, E) if V' C V andE’ C E. If
G’ is atree and’’ = V, then it is aspanning treef G. A biconnected componenf a graph is a maximal
biconnected subgraph.

Traversing a grapli: = (V, E) with a depth-first search [23] (henceforth abbreviated//a¥ creates

a spanning tred’ = (V, Ep), called thedepth-first search treéabbr. dfs tree) of G. T is a rooted tree



rooted at vertex where the search begins. Every verieis assigned a distinct integetfs(u), called its
dfs numberwhich is its rank in the order the vertices are visited bygbharch for the first time. An edge
of G is atree-edgef it belongs to7" and is aback-edgeotherwise. For altv € V' \ {r}, there is a unique
tree-edge(u, w) such thatdfs(u) < dfs(w). Vertexw is called theparentof w, denoted byparent(w),
while w is achild of w. Furthermore, the edge is tiparent edgeof w and achild edgeof u. Since(u, w)

is the only parent edge af, it can be uniquely represented fyurent(w) — w). A leaf is a vertex with
no child. Atree-pathis a path inT". Vertexu is anancestorof vertexwv, denoted by < v, if and only if

u lies on ther — v tree-path. Vertex is aproper ancestoof v, denoted by < v, if and only ifu < v
andu # v. Vertexwv is a (proper) descendanof v if and only if u is a (proper) ancestor ef Note that if

u < v, thendfs(u) < dfs(v). Every back-edge connects an ancestor with a descendaackAdulggu, v)

is anoutgoing back-edgéncoming back-edgeesp.) ofu (v, resp.) ifv < u. Theheightof a vertexv in

T is: height(v) = 0if v is a leaf;height(v) = max{height(u) | wis a child ofv} + 1, otherwise. The
subtreeof T rooted at vertexv, denoted byrl,,, is the subgraph df" induced by the set of descendants of
w. Vg, denotes the vertex set @f,. An embeddingf a graph is a graphical representation of the graph
on the plane. Alanar embeddings an embedding in which no two edges intersect except dgssiltheir
end-vertices. Aaceof a planar embedding is a maximal region of the plane thabimted by some edges
of the graph and contains no edges within it; the edges foahdhindaryof that face. Thexterior faceis
the face that has unbound area. Bxéerior boundaryis the boundary of the exterior face. Anterplanar
embeddings a planar embedding in which all the vertices lie on thertdoundary. Anedge-subdivision

is an operation that replaces an edge with a path of lengthativase internal vertex is a new vertex. A
subdivisionof a graphG is a graph that can be obtained fr@gby a sequence of edge-subdivisions. The
graph K 3 is the complete bipartite graph whose bipartition contams vertices in one set and three

vertices in the other set; the graph is the complete graph with four vertices; (Figure 2).

Ka3 Ka

Figure 2: The graphg{, 3 and K.

In the sequel, an edde:, v) € E is denoted byu — v) if it is a tree-edge with: as the parent, or by
(v v ) if it is an outgoing back-edge af. Moreover,s(v v~ u) = w andt(v v~ u) = v. A path withu

andv as terminating vertices and with an orientation frano v is denoted by ~ v with s(u ~ v) = u;
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t(u ~» v) = v. If the path is a tree-path, it is denoted by~ v. If the path is a section of another path

it is also denoted by, ~p v.

An undirected multigraph is generalized series-paralléabbr. GSPpraphwith sources and sink¢ if

it can be constructed recursively as follows:

- Every edges = (u,v) is a GSP graph with designated as the source andesignated as the sink.

- LetGy = (V4, Eq) andG, = (Va, E5) be two disjoint GSP graphs with soureg sinkt;, and sources,
sink t9, respectively. A new GSP graph is created frémandG, by

¢ theseries compositioBC(G1, G): identify ¢, with s, and designate; andt, as its source and sink

respectively, or

e the parallel compositiorPC(G1, G»): identify s; with s, andt¢; with t9, and designate; and¢; as

its source and sink, respectively.

¢ thedangling compositiodC(G1, G2): identify s; with s9, and designate; andt; as its source and

sink, respectively.

Removing theDC operation and replacing every occurrence of GSP with SPearatiove definition,
we have the definition aseries-parallel(abbr. SP) graph. Clearly, SP graphs are GSP graphs butagwot vi
versa. The sequence of composition operations used toraonatGSP (SP, respectively) graph is called a
construction sequenad the graph.

An outerplanar graphis a graph that has an outerplanar embedding.

3 Characterization theorems

First, we shall consider how to recognize SP graphs and mater graphs that are biconnected. Our
algorithm is based on open ear-decomposition of undiregteghs generated by depth-first search and the

following theorems that state forbidden subgraphs of SPrgrand outerplanar graphs.

Theorem 3.1.[3] A biconnected graph G iSP if and only if it does not contain a subdivision &f;.

Theorem 3.2. [8] A biconnected graph G is outerplanar if and only if it does ocmbtain a subdivision of

K273 or Ky.



Corollary 3.2.1. Every biconnected outerplanar graphSs-.

Definition: A ear-decompositiomf a connected grapy = (V, E) is a partition ofE into a sequence of
edge-disjoint path#’;,1 < i < k, such that for every’;, 2 < i < k, each terminating vertex @; lies on
anP;(j < i) and no internal vertex aF; lies on anyP;(j < i). EachP; is called arear. P;,1 <1i <k, is
anopen-ear decompositidh £ = 1 and P, is an edge, ok > 1, P, is acycle andP;,2 < i < k, is a path

with distinct terminating vertices.

Lemma 3.3. [28] G is biconnected if and only if it has an open-ear decompasitio

Ear decompositions have been used to characterize sevapd gonnectivity properties. Based on

these characterization§)(lg n)-time parallel algorithms for recognizing the graph corivélg properties

on the PRAM have been developed [7, 11]. Eppstein showedathatonnected graph is SP if and only if
it has anestedear decomposition and based on this characterization hgnéelsanO(lgn)-time parallel
algorithm for the PRAM [5]. In the following, we give SP graph new characterization based on ear-
decomposition and depth-first search and then presentaimee algorithm based on it. Since depth-first
search is inherently sequential [19] and our algorithm tisesequential date structuseackheavily, our
algorithm and Eppstein’s algorithm use completely différ@pproaches. Moreover, Eppstein’s algorithm is

not certifying and does not recognize outerplanar graptiseatame time.

Let G = (V, E) be a biconnected simple graph wijth| > 2. By performing a depth-first search over
G, we can use thdfs numbers of the vertices to rank the back-edges as follows [24
Definition: Let (¢ + p) and(y v~ x) be two back edges. Thép  p) is lexicographically smaller than

(y ~ ), denoted byg v p) < (y v x), if and only if
(1) dfs(q) <dfs(y), or
(1) dfs(q) = dfs(y) anddfs(p) < df s(x) andp £ x, or

(13i) dfs(q) = df s(y) andz < p.

Using the back-edges and their ranks in lexicographicaémittie edges af/ can be partitioned into a
collection of edge-disjoint paths such that every pathaostexactly one back-edge as follows: first recall
that every tree-edge can be uniquely representegbdyent(u) — ) for someu € V. For each tree-edge
(parent(u) — u), we associate with it the lexicographically smallest badke(y « z) such thaty <

u = z. The back-edge exists becausés biconnected anfE| > 2. Itis easily verified thaty ~ =) and all



the tree-edges it is associated with form a patlv,ws . .. wiv in G such thavwy, . .. wewz ISV ~>7 .
Furthermore, ifly « x) has the rank lexicographically, we denote the path By : yzw ws ... wiv and
let s(P;) = y andt(P;) = v. Hence the paths can also be ranked lexicographically. ¥ wer,,
to denoteP;. It is easily verified that the sequence of pathsl < ¢ < |E| — |V| + 1, is an open ear-
decomposition of7. P; is anon-trivial earif it contains at least one tree-edge and ts\dal ear otherwise.
Notice that for each back edge - u), s(v v~ u) = v andt(v v~ u) = v, but when it is treated as a trivial
earP, s(P) = vandt(P) = u.

It is important to point out that the ear-decomposition i$ generated explicitly. It is generated by
labeling every edge € FE with the back edge that determines the ear contaiairichis back edge, denoted

by ear(e), is determined during the depth-first search based on tlenfiolg recursive definition:

e if e € E\Er;
car(e) = § min<({f | f = (v~ w) € E\Er}U

{ear(f) | f = (w —v) € Er}), if e= (parent(w) — w) € Er

For each vertexu(# r), Letear(parent(w) — w) = f’. Then of all the ears that contain either a child
edge or an outgoing back edge«wof Py is the only ear that can be extended to include the parent@&fdge

w. The remaining ears all terminate:at

Definition: A vertexwv strongly belonggor s-belong¥sto P, denoted by €, P, whereP is an ear or a
section of an ear if the parent edgewois an edge orP [16]. An ear P, is strongly attachedor s-attach)
to P if t(P;) €5 P ands(P;) belongs toP. An earP, is s*-attachedto P if P; is s-attached taP or P, is
s-attached to an ear thatd4$-attached taP. Two earsP, and P, areinterlacingif they boths-attached to a
earP; such thats(Py,) < s(Pg) < t(Ph) < t(Dy).

The following is a characterization theorem f®P graphs that is based on an open ear-decompaosition

generated by a depth-first search and Theorem 3.1.

Theorem 3.4.Let Py, P, - - - , Pg|—|v|+1 be the ears of a biconnected simple graph= (V, E) generated

by a depth-first search in lexicographical order. Th@ns S P if and only if the following conditions hold:
(a) Forevery earP;,: > 1, there exists an eaP;(j < i) to which P, is s-attached,

(b) For every earP;, there do not exist two interlacing ears that are bethttached taP;.

Proof. Let G be anSP graph.



(a) Suppose to the contrary that there existsFafi > 1) not s-attached to any edt,(h < i) (Fig-
ure Ja)). Lett(P;) s P;. Thens(P;) does not belong t&; and P; < P; imply thats(P;) < s(P;) <
t(P;). Moreover,t(P;) €, P; impliest(P;) < t(P;). We thus have(P;) < s(FP;) < t(P;) < t(F;).
Sinces(P;) < t(P;), P; # P, which implies that(P;) €, P, for somek < j. ThenP, < P; which
implies thats(P;,) = s(P;). Clearly,s(P;) ~»7 t(P;) and P; form a circle which withP;, P, and

s(Py) ~»1 s(P;) form a K4-subdivision, contradicting Theorem 3.1.

— tree link (o)
-- non-tree link

Figure 3: Forbidden structuré’, minor.

(b) Suppose to the contrary that for sorfg there exist two interlacing eai, and P, s-attached to
P;. (Figure 3b)) Then, P;, P, P, ands(F;) ~»r t(P;) form a subdivision ofi(4, contradicting
Theorem 3.1.

Conversely, suppose Conditiofis) and(b) hold forG = (V, E). LetG;,1 <i < |E|—|V|+1, be the
graph consisting oPy, P, - - - , P;. We shall apply induction ofito prove that eacl; is SP.

G is a cycle which is obvioushy P. Suppose the assertion holds fox m(> 2). Consider adding
P,, to G,,—1. By the induction hypothesisy,,_; is SP. By Conditions(a), P, is s-attached to an ear
P;,j < m. If s(Py,) = s(Pj), then there is no eaP; of G,,,_1, hence ofG, such thais(P,,,) =)s(P;) <
s(P;) < t(Pn) < t(F) or P, and P; would be interlacing ears, contradicting Conditidr). But then
P,, can be merged intd;, first with a PC' operation merging?,, with the SP subgraph consisting of
s(Pm) ~p; t(Py) and all the ears*-attached to it, then with as'C' operation joining the resulting P-
subgraph with theS P-subgraph consisting @f P,,) ~p; t(F;) and all the ears*-attached to it. The5P
graphG,, is then formed. Ifs(P,,) # s(P;), By Conditions(b), there is no eaP; of G,,_1, hence ofG,
such that(P;) (s(F;), resp) is an internal vertex of the tree-patl®,,,) ~»1 t(P,,) while s(P;) (¢(F;), resp)
lies outside the tree-path. Hende(P,,),t(P,,)} is a separation pair partitioning,,—, into two or more

connected components each of which isSah graph witht(P,,) ands(P,,) as the source or sink. Since
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Figure 4: A characterization of outerplanar graph.

P,, is anS P graph with source(P,,) and sinks(P,,), it can be merged with thoseP graphs with source

t(P,,) and sinks(P,,) to form G,,. O

For outerplanar graphs, we have the following charactéoizaheorem whose correctness is based on

an open ear-decomposition generated by a depth-first seadclhiheorem 3.2 [24].

Theorem 3.5.Let P, P, - - -, Pg|—|v|+1 be the ears of a biconnected simple graph= (V, E) generated

by a depth-first search in lexicographical order. Th&ris not outerplanar if and only if one of the following

conditions holdgFigure 4):

(a) There exists a non-trivial eaP;,7 > 2 such thats(P;) # parent(t(P;)), or

(b) Je € Er for which there are two non-trivial ear®;, P; such thate = (s(P;) — t(P;)) = (s(P;) —
t(Fj)), or

(¢) Thereis an ea;,: > 1, to which two interlacing trivial ears are s-attached.

Condition (a) ((b), respectively) implies thaf’ contains ak; 3-subdivision (Figures @),(b)) while

Condition(c) implies thatG contains ak4-subdivision (Figure &)). By Theorem 3.2¢ is not outerplanar.
4 Recognizing SP graphs and outerplanar graphs

Let G = (V, E) be a biconnected multigraph graph. Turederlying simple graplof G is the simple graph
Gs = (V, E,) such thatu, v)¢ € E; if and only if verticesu andv are connected by parallel (u, v) edges
in G. Specifically, every set of parallel (u, v) edges inG is replaced by a single edge, v) in G,. The

graphG, can be represented by the following compact adjacencydisticture:

o for each(u,v) € Ei, there exists/|[v| (|¢]u

, respectively) in the adjacency lig{u] (L[v], respec-

tively) of u (v, respectively)iZ|u| has a pointer pointing a£[[u|, and vice versa.
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This compact adjacency-lists structure can be construetd| £|) time by sortingF in lexicographical
order with radix sort following by a scan over the sorted lisis easily verified that7 is SP (outerplanar,
respectively) if and only if7¢ is SP (outerplanar, respectively). Hence, the problemadgeizing SP and
outerplanar multigraphs can be reduced to that of recagmidP and outerplanar simple graphs. Theo-
rems 3.4 and 3.5, can thus be applied. Dealing Wittinstead ofG not only simplifies the presentation of
our algorithms as we do not need to deal with parallel edgealba reduces the number BC operations
performed, hence the size of the data structure repregahinconstruction sequence. Siegis a simple
graph, ifG, is SP or outerplanar, thef;| < 2|V| — 3 [12]. Hence, the size di[v],v € V, is bounded by
O(]V|). This implies that using the compact adjacency lists, thegeition algorithms run i®(|V|) time.

Our algorithm performs a depth-first search ofgrattempting to construct a construction sequence and
an exterior boundary af’;. When the search backtracks to the repif G, is in SP N OP, a construction
sequence and an exterior boundaryiafare generated; if7; is in SP \ OP, a construction sequence Gf
and ak, 3-subdivision ofG are generated. Iff, is not in SP, execution of the algorithm is aborted and a
K,-subdivision ofG, is generated. Note that for biconnected grafi#) SP = () by Corollary 3.2.1. For
clarify, we shall address how to recognize SP graphs andpatear graphs separately.

Since the parallel-edge courtare kept in the nodes of the adjacency lists, the compactemijg-lists

structure also represents Therefore, in the following discussion, we shall s@ndG interchangeably.

4.1 Recognizing series-parallel graphs

A construction sequence of an SP graptcan be conveniently represented by a binary ffeecalled a

decomposition tre@~igure 4), similar to that of minimal vertex series-paghiiraph [26] as follows:

e T consists of a single nodé||u|ejv], if G is a set off parallel edges with soureeand sinkw.

e T is a binary tree with0||s|S|t| as the rootl, andTg, as the left and right subtrees, respectively,

if G = SC(G1, G2), wheres is the source ofr; andt is the sink ofG,.

e T is a binary tree with0||s|P|t| as the root/;, andTg, as the left and right subtrees, respectively,

if G = PC(G1,G2), wheres andt are the common source and sink®@f andG., respectively.

Note that by replacing every||u|ejv| node with a binary tree consisting 6feaf nodegu|ejv| and? — 1

; every|0|s|SJ¢| with |s|S|t

internal nodegu|P|v , and eveny0||s|P|t| with |s|P|¢|, we can turr7 into a

conventional decomposition tree (| E|) time.

In explaining how to generate a decomposition tre€& ah detail, the following notations will be used:

11
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Figure 5: dfs backtracks fromw to v, thew-SPchain, stackstk,,, stk, and a decomposition tree adq.

SP,..,. an SP subgraph consisting of the path ~ y (which is a section of an ear) and all the ears

s*-attached to it. The source and sink%F,....,, arex andy, respectively.

SP,,. anSP subgraph consisting of an eBrand all the ears s*-attached i such that: = t(P) is the

source and; = s(P) is the sink unlesg = r; thenr = s(P) is the source and = ¢(P) is the sink.

Both SP,.., andSP, , are represented by decomposition tree.

At each vertexw, a stackstk,, is maintained. An entrx on stk,, has three fieldsx.SP, X.end and
X.tail, wherex.SP = SP, ,, for somez, x.end = z, andX.tail = SP,..,, for somez, or nil (Figure 5).
If G is SP, entryx’ is above entrni” on stk, if and only if 2/ < z”. When thedfs backtracks taw, all
the SP subgraphs stored ostk,, are popped and merged to form a largdP subgraph. The top entry is
represented biop.

The key idea of the algorithm is to perform a depth-first deancerG so that when thelfs backtracks
from a vertexw to its parent, the parent edgew, v)? and the section of edr.,;(,—w) from s(Pear(v—w))
to w and all the ears s*-attached to that section have been dramsfl into a chain of SP subgraphs, called
thew-SPchainS Py, .w,; 1,0 < i < k, andS Py, .,, wherewg = s(P.qr(v—w)), SUCh that (Figure 5):
(i) For each eal; that is nots-attached to the aforementioned sectionf,.(, ..,y butt(Py) s-belongs
to that section ot(Pr) = w (note thats(P;) < w), the ear and all the ears s*-attached to it have been
transformed into a' Py, s(p;) for somel < i < k, and stored as.S P in some entryi on stackstks(Pf);
(i9) for eachw;, 1 < i < k, there is at least onﬁPwivs(pf); (1ii) everySPy, ., 1 <i <k, Iis stored on
stks,,, astop.tail, wheres,,, = s(Pf) and Py is the lexicographically smallest ear withPf) = w;. The
only SP subgraph that is not stored on any stackis, ..., which is designated asq,, or seq. In Figure 5,

the w-SPchain consists & P, ..,, = SC(a,b), SPy, vswy =1, SPuswsws = SC(d?,f), SPyymw, =N, and
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seq = SP,,.., = SC(PC(SC(t,q),p*),s). Thew-SPchain is constructed as follows:

Whenw is a leaf of thedfs tree, (a) if w has no outgoing back edge, thenss biconnectedy = r
andG consists of the set of parallel edg@s, v)”, wherep > 1. Hence(w, v)? represents a construction
sequence ofr and execution of the algorithm terminate&) if w has exactly one outgoing back edge
(u ~ w)¥, thew-SPchain consists &P, (= seq,) = SC((u ~ w), (w,v)P). Inthis casek = 0. (c) If
w has more than one outgoing back edgesuttePchain consists &f P;...., andS P, ..., whereS P;...., =
(@~ w)* which is the lexicographicallgmallestoutgoing back edge af and SP,.., = (w,v)P. Each
remaining outgoing back edge’ ~ w)" contributes ong& P, ,» which is stored on stack k,,. Moreover,
(@~ w)" is stored asop.tail on stackstks, . In this casek = 1, w; = w andseq,, = (w, v)P.

Whenw is an internal vertex, when théfs backtracks tav from a child vertexu, the u-SPchain has
been constructed. Stackk,,, if non-empty, is popped to extengq,. If there is an ear interlacing with
some ears stored oftk,,, it will be detected and & ,-subdivision is generated (Figuréd). Otherwise,
whenstk,, is emptied,a) If t(ear(w — u)) > t(ear(v — w)), theu-SPchain must consists of solelyq,

which is pushed onto stackk, cq,(w—)) OF @K 4-subdivision is returned (Figurg®). (b) If t(ear(w —

Figure 6: Detecting violation of Conditiofia) and(b).

u)) < t(ear(v — w)), then as with Caséu), the currentw-SPchain must consists of solelyq,, which is
pushed onto stacktk;(cqr(v—w)) OF @ K4-subdivision is returned. The-SPchain then becomes the current
w-SPchainseq,, := seq, andear(v — w) := ear(w — u). (¢) If t(ear(w — u)) = t(ear(v — w)),
then as with caseg:) and (b), theu-SPchain and the current-SPchain areeq, andseq,, respectively,

or a K4-subdivision is returned. The two SPchains are merged to the currento-SPchain consisting of

solely seq,, which is the SP subgrapt$ P, qr (v—w))~w = PC(s€qu, s€qu)-
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For each outgoing back edge -~ w)" of w, since the edge can be viewed as an SP chain consisting of

just (u ~ w)", by lettingseq, = (u ~ w)", the above procedure applies.

When L[w] is completely processedq) if v # r, then if there is no ear terminating at seq,, :=
SC(seqw, (w,v)P) (i.e. extendseq, to include the parent edge); otherwiseq,, is stored afop.tail on
stackstks, , andseq,, := (w,v)P. In either case, théfs backtracks ta. (b) If v = r, thensegq,, must be
the entirew-SPchain which is a8 P,..,,. Hence, the instructiogeq,, = PC((v, w)?, seq,,) producesseq,,
as a construction sequence®f

The pseudo-code of the algorithm is given below. The maignam and the initialization steps of
Proceduré&enCs are self-explanatory. THer loop in Procedur€&enCS processes the adjacency ligto].
Theif part of theif statement in the loop deals with the child verticeswivhile theelsepart deals with
the outgoing back edges of. ProcedurdJpdat e- seq pops staclstk,, to updateseq, or generates & 4-
subdivision if a pair of interlacing ears is discovered. dedureUpdat e- ear - of - par ent determines
whetherseq,, and seq,, are to be merged or one of them is to be pushed on a stack, ardageEnalik,-
subdivision if the one to be pushed is not the entif§Pchain or currenty-SPchain. Thef statement
following the for loop updatedop.tail on stackstks, if needed. The nexif statement completes the
construction of the construction sequence it= r, or extendseq,, to include (w,v)?, otherwise. Note
that those instructions marked lycan be ignored for the time being as they are meant for reziogni

outerplanar graphs which will be explained later.

Algorithm SP&Qut er pl anar

Input: The compact adjacency lisidw], Vw € V, of a biconnected multigrapy = (V, E).
Output: { seq (a.SP decomposition tree afr)

’ Ep (the edge set of the exterior boundary of an outerplanar ddibg of G)
or, seq (a SP decomposition tree aff) and aK 3 subdivision ofG, if G is series-parallel but not outerplanar,
or, aK4-subdivision ofG, if G is neither series-parallel nor outerplanar;

,if G is series-parallel and outerplanar,

begin
for eachw € V dodfs(w) := 0; // markw as unvisited
empty stk.;
count = 1; I df s number
o Ky 3-found := false; Il K3 3-found is true iff a K2 3-subdivision has been found
GenCsS(r, L, 0, seq); /I 1 represents the undefingdrent(r);
end.

ProcedureGenCS(w, v, p, seq) Il (w,v)? € E,
begin
df s(w) := count; count := count + 1; [/l assign adfs number tow
parent(w) := v;
if (w#r)thenear((v — w)) := 001ep; M initialize ear(v — w); f < Otes, Vf € E\ET

Sw 1= 00x; Ilinitialize 5.; u < co<,Yu €V
. b.alert(w) := false; Il for detecting violation of Theorem 3b)
seq := nil;
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for each (|¢[|u| in Lw]) do I process the adjacency list af
if (dfs(u) = 0) then Il uw is unvisited
GenCS(u, w, ¢, sequ);
Updat e- seq(w, sequ); I/ pop stk., to updateseq
if (w # r) thenUpdat e- ear - of - par ent (w — u, sequ, w, v, seq);

else if (dfs(u) < dfs(w)) A (u # v) then // outgoing back-edgéu  w)*
ear(u-Vnw) = (u N w),;
Updat e- ear - of - par ent (u ~ w, (u ~ w)*, w, v, seq);

if (w # r) then /I extendseq to include(v — w)

if (5w # co<)thenfor stks,, dotop.tail := seq; seq := nil; [/ there is an ear terminating at

» if (v=r)thenseq:=PC((v,w)?, seq) /I generate th&ast PC operation
elseseq := SC(seq, (w, v)?); I/l extendseq to include the parent edge of

if (~ (K2,3-found)) then /] extend the exterior boundany; is the logicalnegationoperator

[ ]

. if (w # r) then

. case(number of children ofv) is

. 0: add(ear(v — w)) and(v — w) to Ep; I Figure 8, Case 1
. 1:if (s(ear(v — w)) = w) thenadd(ear(v — w)) to Ep; [/ Figure 8, Case (@)
. elseadd(v — w) to E'p; /I Figure 8, Case(2)

end; // of GenCS

ProcedureUpdat e- seq(w, seq)
begin// extendseq by merging allS P subgraphs stored otk., with seq
while (stk., is non-empty do
pop top from stackstk,,;
if (source ofseq # top.end) then Report ( K4) ; stop;  // Return aK4-subdivision
seq := PC(seq,top.SP); if (top.tail # nil) then seq := SC(top.tail, seq);
end;// of Updat e- seq

ProcedureUpdat e- ear - of - par ent (f, sequ, w, v, seq)

begin
if (t(ear(f)) < t(ear(v — w))) then /I Case (b)
if (ear(v — w) # c0es) then Il ear(v — w) is defined
. if (~ (K2,3-found) A s(ear(v — w)) # w) then I Pegr(v—w) 1S NON-trivial
. Ky 3- Test (v = w), v, b.alert(w)); Il Check forK3 3-subdivision
if (source ofseq # t(ear(v — w))) then Repor t ( K4) ; stop;
else topend := w; top.SP := seq; top.tail := nil; I/ pushseq ontostky(car(v—sw))
push top onto stackstky(car(v—w))s
Sw = t(ear(v = w)); I updates,,
ear(v — w) = ear(f); seq:= sequ; I/l updateear(v — w) andseq
else
if (source ofseq., # t(ear(f))) then Report ( K4) ; stop;
if (t(ear(f)) = t(ear(v — w)))) then Il Case (c) seq andseq,, have common source and sink
. if (~ (K2,3-found)) then /I Check forK> 3-subdivision

if ((f is not a back-edgeA (s(ear(v — w)) # w)) then Kz 3-Test (f, v, b.alert(w));
if (source ofseq # t(ear(v — w))) then Report ( K4) ; stop;
elseseq := PC(seq, sequ);
if (ear(f) < ear(v — w)) thenear(v — w) := ear(f);
else Il Case (a) t(ear(f)) > t(ear(v — w))
if (~ (K2,3-found)) then
if (f is not a back-edgehen K> 3-Test (f,v, b.alert(w)); [/ Check forK; s-subdivision

if (stky(ear(s)) # OAtOP.end = w) Il seq,, andtop.S P have common terminating vertices
then top.SP := PC(top.S P, seq..) /I mergesegq, with top.SP
else topend := w; top.SP := seq,; top.tail := nil; I pushseq., onto stackstky(car(r))

push toponto stackstk;(car(s)):

Sw = min<{5., t(ear(f))}; /l updates,,

end; // of Updat e- ear - of - par ent

e Procedure K 3-Test (e, v, b.alert)
e begin
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o if (t(ear(e)) # v) thenReport (K2 3); Il Theorem 3.8a) is violated; return &> 3-subdivision

e else if(b.alert) then Report (K23); /I Theorem 3.%) is violated; return &, 3-subdivision
° elseb.alert := true; /l warning: a non-trivial eaP’ with s(P) = v has been found; can’'t have another
. b := ear(e); /I for generating d2,3-subdivision when Theorem 35 is violated

e end.// of K3 3- Test

Lemma 4.1. Letu be a child ofw. Let f;;1 < i < ¢, be the set of incoming back-edgesuokuch that
t(Py,) = w; lies on Py @Ndu; =X uip1,1 < 4 < g. When thedfs backtracks fromu to w, let
SP,,w,1 <i < g, bethe SP subgraph constructed based on/gar If there is no earP; such thatt(Py)
is an internal vertex ofv ~»7 u, ands(P;) < w, then on stacktk,,, SP,, .,1 < i < g, lies above

SPuz‘+17w'

Proof. Since there is no ed?; such that(Py) is an internal vertex ofv ~»r u, ands(Py) < w, therefore,
for eachf;,1 < i < g, there is no eaP with ¢(P) = u; ands(P) < w. This implies thatSP,, ,, is pushed
onto stackstk,, after thedfs backtracks tas; from its child onF, . (,,—.). Hence,SPy, »,1 <i < g, lies

aboveS Py, w 0N stky,. O

Theorem 4.2. In the course of executingrocedure GenCS, when the dfs backtracks from vertexto its
parent vertexo(# r), the parent edgéw, v)? and the section of eaP. ., (y—w): $(Pear(vow)) ~ Prar(vsuw)

w, including all the ears s*-attached to that section haverbgansformed into a chain & P subgraphs,

SPuyiwiyr,0 <0 < k,and S Py, ., Wherewg = s(Peqy(v—w)) SUCh that (Figure 7):

(i) for each earPy with t(Py) €5 P.yp(v—w) SUCh thatwy < s(Pr) < w =X t(Py), Py and all the other
ears with the same source and sink, and all the ears s*-agteh¢h them have been transformed into
anSP subgraphSPwi,s(Pf), for somei, 1 < i < k, such that on stacktks(Pf), there is an entry

with X.end = w;,X.SP = SPwi,s(Pf) and

v} SPuus () = 5, wheres; = min{t(f) | (f' € B\ Br) At(Pp) = wil:
X.tarl =
nil, otherwise.

(ZZ) Vwi, 1< < k, ElSPwi,s(Pf)a with wo < S(Pf) < w,
(17i) seq = SPy -

Proof. (By induction on the height ofv in T) Whenw is a leaf, based on the discussion given before
Algorithm SP&Qut er pl anar above, it is easily verify that the theorem holds far
Let w be an internal vertex df and(w,v)? € E,. We shall call the chain of P subgraphs satisfying

Conditions(i) — (iii) thew-SPchain. Let|¢[[u| be the next node if[w] such that # v.
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Figure 7: A chain of S P subgraphs associated with vertex

(¢) If wis unvisited, then: becomes a child ofs. When thedfs backtracks fromu to w, by the induction
hypothesis, the-S Pchain has been created. Letit8&,,...,,,,,0 < i < h, and(seq, =)SPy, v, Where
ug = $(Pear(w—u)). Procedurédpdat e- seq is then invoked to pop stackk,,. Letq,1 < ¢ < h be the
smallest index such th&tP,, ., exists. If there is aib' P, ., ¢ < j < h, such that < w, let it be the one
closest taw (Figure §a)). Letu,, be closest ta; such thatn < j andSP,,, ., exists. Since: < w, SP,; .
is not onstk,,. Therefores(u;.tail) < u; for every entryu; above entryu,, on stk,,. Hence, after all the
entries above,, are poppedseg,, becomes aib P, ;...,,. Whenu,, is popped, asi,,.end = up, # uj, a
K -subdivision is returned. On the other hand, if there isSerj,Z, q < j < h, such that: < w, then by
Condition (i), SP,, w,q < i < h, exist. By Lemma 4.1, on stackk,,, SP,, w,q < i < h, lies above
SPy,., v Hence, whestk,, is emptiedseq, is updated to a¥ P, ..., whereg € {q,q—1} (depending on
whether3SP,, . with z < w), and theu-S Pchain becomes P, ..., ,,0 <1 < ¢, and(seq, :)SPquw.
It is easily verified that the modified-S Pchain satisfies Conditions) — ().

(a) If tlear(v — w)) < t(ear(w — w)), thenseq, terminates atw. If § # 0, then there is an
ear P with t(P) = wu; such thatuy < s(P) < w (Figure §b)). This ear violates Conditiofia) of
Theorem 3.4. The algorithm thus terminates execution anoin®g aK4-subdivision. Otherwise, the-
SPchain consists of justeq,(= SPy ww = SPyu,). If on stackstk,,, top.end = w, thentop.SP is
replaced byPC(top.S P, seq,,) as the two SP subgraphs have common source and sink. Otbeswis is
pushed onto stacktk,,, such thatop.SP = seq,, top.end = w andtop.tail = nil. (b) If t(ear(w —

u)) < tlear(v — w)), let the currentw-SPchain beSPy, .y, ,,0 < i < p, and(seq =)SPy,—u. Then

i1

seq terminates atv. As with Case€(a), p = 0 or a violation of Condition(a) of Theorem 3.4 is detected. In
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the former case, the curreatS Pchain consists of justeq(= S Pyy-w = SPuyw,) Which is pushed onto
stackstk,,, such thatop.SP = seq, top.end = w andtop.tail = nil. Thewu-SPchain then becomes the
currentw-SPchain ancear(v — w) = ear(w — u), seq := seqy. (c) If t(ear(w — w)) = t(ear(v —
w)) (i.e. up = wp), then as with Caseg:) and(b), ¢ # 0 or p # 0 implies that there is an ed? with
t(P) = ug4 or t(P) = w, whereby violating Conditiorfa) of Theorem 3.4. The algorithm thus terminates
execution and return A4-subdivision. Otherwiseseq = S Py, -, andseq,, = S P, Which are merged
by seq := PC(seq, seq,), and the currentv-S Pchain consists of jus§ P, ...,(= seq). Furthermore, if
ear(w — u) < ear(v — w), thenear (v — w) = ear(w — u).
(41) If w is visited, theu-S Pchain isS P, ..., consisting of(u -~ w)* andseq, = SP,,-,. The remaining
argument is same the above case wheieunvisited.

When L[w] is completely processed, let the currantS Pchain beSP,, ..., ,,0 < i < k, and(seq =
)S Py - The chain consists of oy (v—w)) ~ Prgrioy W @nd all the ears*-attached to it.

For each eal’; with ¢(Py) €5 P.or(v—w) SUCh thatwy < s(Py) < w = t(Py), if t(Py) # w, then
P; satisfies Conditionsi) by the induction hypothesis. {P;) = w, then from the above discussion, on
stackstks(pf), top.SP = SPW(pf) andtop.tail = nil. Furthermore, by a simple induction eywhere;
is the number of nodes ih[w] that have been processed, it is easily verified hat min<{t(f’) | (f' €
E\ Er) A (t(Pp) = w)}. Hence, aftetop.tail := seq(= SPy,...) ON stkz,, Py satisfies Conditions
(4). Condition (i) is satisfied by the induction hypothesis and the existencelQf ,(p if there existsP
with ¢(P) = w. Finally, asseq = nil if 3P with t(P) = w, andseq = (wr ~» w), otherwise, after
seq := SC(seq, (w,v)?), Condition(iii) clearly holds. Hence, when th#s backtracks fromw to v, the

w-S Pchain has been correctly generated. O

Theorem 4.3. Algorithm SP&Outerplanar generates a construction segeefor G if G is SP or a Ky-

subdivision of&, otherwise, inO(|V]) time.

Proof. If G is not.SP, then as was explained in the proof of Theorem 4.2, a vislatibCondition (a)
or (b) of Theorem 3.4 will be detected andig;-subdivision is returned. Otherwise, letbe the child of
the rootr (G is biconnected implies that is unique). Ifw has no children, thetr consists of a set gf
parallel edges with end-verticesandw. When thedfs reachesw, seq = nil. Sincev = r, therefore,
seq = PC(seq, (w,v)P) = (w,v)P which is a construction sequence @fwhen thedfs backtracks ta-.

If w has children. Let: be the child ofw lying on the earP; (i.e. Poyrpwou) = P1)- Since#P; with
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r < s(Pr) < w, when the depth-first search backtracks froro w, Theorem 4.2i) implies that after
stk is emptied theu-S Pchain consists of solelyeq, = SP,...,. It follows that the currentv-S Pchain

consists ofseq = SP,..,

ear(w—u

Jw- Similarly, for each remaining child’ of w, the v’-S Pchain consists

of justseq, = SP...,

ear(w—u

- Sinceseq andsegq,, have common sourceand sinkw, seq,, is merged
into seq by seq = PC(seq, seq,’). Therefore, afted.|[w] is completely processed, the curremtS Pchain
consists okeq = SP,..,, and the finaPC((r, w)?, seq) produces a construction sequencedor

The initialization clearly take®(|V]) time. Ve € E\ Er, sinceear(e) = e, determiningear(e) takes
O(1) time. Determiningear(e), Ve € Er, takesO(|V]) time during thedfs. By storingear(e),e € Er, as

ear[w], wheree = (parent(w) — w), in an arrayear[1..|V

], retrievingear(e), s(ear(e)) andt(ear(e))
takesO(1) time each. By representing evefy” subgraph with a decomposition tree that keeps its source
and sink at the root node, retrieving the source and sink df Brsubgraph, and performingC(S;, S2),
PC(S1, S2) and determining their respective source and sink each @késtime. Hence, excluding the
time spent on generating /d,-subdivision, Procedurtpdat e- ear - of - par ent takesO(1) time and
thewhile loop in ProceduréJpdat e- seq takesO(1) time per iteration.

For eachw € V, The initialization steps in Procedu@enCS take O(1) time. The body of thdor
loop excluding the call to Procedutépdat e- seq and the recursive call (which is charged to vertgx
takesO(1) time. ProcedurdJpdat e- seq processes the entries on stack,,. Since each entry on the
stack corresponds to a distinct incoming back-edge ahd thewhile loop takesO(1) time per iteration,
the total time spent on Procedudpdat e- seq for vertexw is thusO(degg(w)). Thefor loop thus takes
> uerfw) O(1) + O(dega(w)) = O(dega(w)) time. Theif statements following théor loop takesO(1)
time. HenceAlgorithm SP&Outerplanar takey, _,, O(degg(w)) = O(|V]) time to generate a P
construction sequencedt is anS P graph.

If G is not anS P graph, as will be shown in Section 4.3.1, generatirg,esubdivision involves tracing

out at most three ears and a tree path which t6k¢¥|) time. Hence, the algorithm takéy|V|) time. O

4.2 Recognizing Outerplanar graphs

The following lemma shows that th#fs-treeT' of an outerplanar graph has a very simple structure.
Lemma 4.4. If G is outerplanar, every vertex has at most two childreff’in

Proof. Animmediate consequence of Theorem @5and(b). O
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SinceG is outerplanar if and only if its underlying simple graph igerplanar, in the algorithm presented
below, we disregard the parallel-edge codin the nodes of the adjacency lists.

The algorithm is conceptually very simple. The exterior fiary is constructed during the depth-first
search in a bottom-up manner by starting from the leaves eattuiglly moving towards the root.

In general, at each leaf, the parent edge af and the lexicographically smallest outgoing back-edge
of w are added to the exterior boundary.

At each internal vertexy, owing to Lemma 4.4, only two cases are to be considered.

1. w has one child: let the child beand(z \~ w) be the lexicographically smallest outgoing back-edge
of w. If (z ~ w) exists andz  w) <ear(w — u), then(z «~ w) is added to the exterior boundary;

otherwise, the parent edge wfis added.

2. w has two children: no edge incident anis added to the boundary at Note that, however, two of

such edges must have been added to the boundary at somediéegsasiw.

Clearly, the above method for determining the exterior lolauy can be carried out concurrently with
the construction of theS P construction sequence. Wlgorithm SP&Outerplanar, the instructions for
constructing the exterior boundary are marked wit dhe flagsK 3- found andb.alert(w) are used to
detect violation of Conditionsa) and(b) of Theorem 3.5. In Procedutdpdat e- ear - of - par ent , the
newly inserted instructions are for detecting violatioritaf two conditions. Specifically, when a non-trivial
ear terminating atv is found, if the other terminating vertex of the ear is patent(w), a violation of
Condition(a) is detected. Iparent(w) is the other terminating vertex buitalert(w) is true, a violation
of Condition (b) is detected; otherwisé,alert(w) is set totrue. Note that detecting violation of Condition

(c) is taken care of by the part of the algorithm that construesdecomposition tree.

Lemma 4.5. In the course of executinBrocedure GenCS, Vw € V\{r}, when the depth-first search

backtracks from vertew to its parent vertex, let G,, be the subgraph aff consisting of:
e the cycle formed by the ed,, (,_..,) and the tree-path (P, ., (v—w)) ~1 t(Pear(v—w)), and
e P, ={P | (Pisanon-trivial ear) A (w = t(P))}.

Let E'; be the set of edges addedHg while the dfs was traversingj,,. ThenE’; ands(Pm(Hw)) A

v form the exterior boundary of an outerplanar embedding-gf
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Figure 8: Case 1w has no child. Case 2v has exactly one child.

Proof. (By induction on the height ofv in 7)) Whenw is a leaf, asP,, = 0, G,, is a cycle consisting
of Prgr(vsw) aNA8(Pegr(vsw)) T U Pear(v—w)). SinNC€(v — w) andear(v — w) are the two edges
added toEp, whereear(v — w) = (z v w) is the lexicographically smallest outgoing back-edgevof
E¥ = {(v - w),(z ~ w)} (Figure 7, Case 1). Asv — w),(z ~ w) andz ~»r v form G,,, and
(8(Pearw—w)) ~1 v) = (2 ~7 v), the lemma holds fow.

Whenw is an internal vertex df’, first, consider the case whetehas exactly one child. Let (z \ w)
be the lexicographically smallest outgoing back-edge off z < t(ear(w — u)), thent(P.,,(y—u)) = w
(Figure 7, Case 2)). If s(P.qpw—u)) 7 v, a violation of Condition(a) of Theorem 3.4 is detected, and
the algorithm terminates execution and return&sg-subdivision. Otherwise(r, consists 0OfF, ;. (y—u),
(v — w) andP,. SinceG,, consists OfF..; (,—w); §(Pear(vow)) T W Pear(vow)) @NAPuw; Pegr(v—w)
ands(Pregr(v—w)) T HPear(v—w)) are equivalent tdz  ~ w), z ~r v, andv — w, it follows thatG,,
consists of z ~ w), z ~71 v,v — w, andPy,. ThenP,, = Py, U { Py (w—v)} implies thatG,, consists of
(z W),z ~71 v, v = w, Py and Pyg, (- Which implies thatG, consists of 2~ w), 2z ~7 v andG,,.
By the induction hypothesidy}, and(v — w) form the exterior boundary of an outerplanar embedding of
G,. Therefore, by embedding - w) andz ~»7 v onto the exterior face of the planar embedding-gf
and connecting them to the latter at verticeendv, we obtain an outerplanar embedding@f. Since
ear(v = w)(= (2 v w)) was added t&F}; atw, B} = E}, U {(z ~ w)}. This implies thatE'}} and
2~ (= 8(Pegrv—w)) ~1 v) form the exterior boundary of an outerplanar embedding of

On the other hand, ifz «~ w) does not exist of(ear(w — u)) < z, thenear(v — w) = ear(w — u)
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Case 3:

@ (b)

the boundary of i within the subtreg T
Figure 9: w has exactly two children.

which implies thatP,,,(,—w) = Pear(w—w) (Figure 7, Case @)). Therefore,G,, consists ofF, ., (y—w),
5(Pearwow)) T t(Pear(v—w)) @NAPy, implies thatG, consists o, o, (w—u)s $(Pear(w—su)) T t(Pear(w—u))
andP,,. Sincew has only one child, therefor®,, = P, which implies that&,, consists ofP,,;(—u)
8(Pearw—u)) T U Pear(w—v)) @ndP,. It follows thatG,, = G,. Since by the induction hypothesis,
G, has an outerplanar embeddir@,, thus has an outerplanar embedding. Moreover, by the ir@ucti
hypothesis E'; ands(Peqr(w—u)) ~7 w form the exterior boundary of the outerplanar embedding: pf
and hence olz,,. As B = Ej; U {(v = w)} ands(Pegr(w—u)) ~7 W CONSIStS 0 (Pregy(v—w)) ~1 v
and (v — w), E ands(P,qr(v—w)) ~71 v form the exterior boundary of the outerplanar embedding of
G- The assertion thus holds far.

Next, consider the case wherehas exactly two children; anduy such thatar(w — u1) < ear(w —
uz). ThenG,, consists ofF, ;. (w—u,)s S(Pear(w—u)) T HPear(w—uy)) @NAPy, . Similarly, G, consists
Of Pregr(w—suz)s $(Pear(w—uz)) T t(Pear(w—us)) @NAPy, (Figure 8). Sincear(w — u1) <ear(w — uz),
t(Pear(w—us)) = w ands(Peqr(w—uy)) = v, OF @ violation of Condition(a) of Theorem 3.5 is detected.
Therefore Gy, consists 0ff.,;.(y—u,), v — w aNdPy,. Moreover,P,, (,—w) = Pear(w—su,)-

Now, G, €onsists o, o, (v ), S(Pear(v—sw)) T tH(Pear(v—sw)) @NAPy. SINCEP o (v—sw) = Pear(w—suy)
and Py, = Pu; U Puy U {Pegr(w—usz) ) it follows that Gy, consists OfF, o, (w—uy ) S(Pear(w—uy)) ~T

t(Pear(w—u1))s Puy» Pug @A P (w—uy) OF €QUiValently G, , andG,, excludinge — w.
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By the induction hypothesidyyy" ands(P,qy(w—u,)) ~7 w form the exterior boundary of an outerpla-
nar embedding ofr,,,; E andv — w form the exterior boundary of an outerplanar embedding'of.
By embeddingG,,, onto the exterior face of the planar embeddingdyf, and connecting the two plane
graphs at vertices andw, we obtain a planar embedding @f,. SinceE = E};' U ER?, this immediately
implies thatE'y and s(Peq,(v—w)) ~7 v form the exterior boundary of an outerplanar embedding of

The lemma thus holds fap. O

Theorem 4.6. Algorithm SP&Outerplanar generates the exterior boundafyan outerplanar embedding
of G if G is outerplanar, or ak4-subdivision ork 3-subdivision of7, otherwise, inD(|V]) time.

Proof. If G is not outerplanar, then as was explained in the proof of fidreal.5, a violation of Condition
(a) or (b) of Theorem 3.5 will be detected (violation of Conditi¢s) is taken care of by that part of the
algorithm forS P graphs). Otherwise, let be the child of the roat. ThenF,,,(,_,,,, = P1. By Lemma4.5,
when thedfs backtracks fromw to r, (= Ep) forms the exterior boundary of an outerplanar embedding
of G,,. SinceG,, consists of?, andP,,, G andG,, differ in only the trivial ears which can be embedded into
the interior faces of the outerplanar embedding-gf because no violation of Conditiafa) was detected.
HenceF; is the edge set of the exterior boundary of an outerplanaeddibg ofG.

The initialization related to outerplanar testing cleddiesO(|V]) time. In Procedure GenCS, since
the instructions for testing outerplanarity (markedds) take O(1) time for eachw € V' \ {r}, Proce-
dure GenCS, excluding the time spent on detectifi s3-subdivision, take€)(|V]) time. To detectks 3-
subdivision, the instructions iRrocedure Updat e- end- of - par ent (marked bye’s) take O(1) time
for eachu € L{w]. Procedure K3 3- Test excluding the time spent on Rep(@il; 3) takesO(1) for each
e € Ep. DetectingKs 3-subdivision thus takes a total 6f(|V|) time. As will be shown in Section 4.3.2,
generating &5 3-subdivision involves tracing out at most two ears and twe-pathsProcedureRepor t
thus takegD(|V']) time. DetectingKs-subdivision is taken care of when the algorithm is checking is

series-parallel. Hencé\lgorithm SP&Qut er pl anar takesO(|V|) time on outerplanarity testing. [

4.3 Generating forbidden subgraphs
4.3.1 Generating aK4-subdivision

When a violation of Conditioria) of Theorem 3.4 is detected RProcedure Updat e- ear - of - par ent ,

if it is caused by the condition ‘source eéq,(= uy) # t(ear(f))’, then f = (w — u) andProcedure
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Report is called to generate &4-subdivision consisting of (Figure®)):

o Pour(w—su) @nd the lexicographically smallest e@with ¢(P) = up, A $(Prgr(w—su)) < S(P);

* 5(Pear(vow)) ~Prgp(ooswy W ANAS(Fear(vsw)) 1 W

The earP,,,,—v) can be generated by starting from the back-edggw — u), using the array
parent[z],Vz € V, to determine the tree-edges on it until verteis reached. The pati Py, (v—w)) oy (usu)
w can be generated similarly. The pattP.,,,—.)) ~»7 w can be generated similarly by starting from
w. To determineP, we determine® such thatear(¢) = min.{ear(e) | (e = (up, — y) Ve = (y ~
up)) A (tear(w — w)) < t(ear(e)))}. ThenP = P,,, ;) which can be generated similar R, (,—.)-
Since all of the above steps takd|V'|) time, TheK,-subdivision can be constructeddn(|V|) time.

If it is caused by the condition ‘source eéq(= wy) # t(ear(v — w))’, then Procedure Report is
called to generate A4-subdivision consisting of:

® Prur(v—w) and the lexicographically smallest eawith t(P) = wy A $(Pregr(vosw)) < 5(P);

® S(Pear(f)) ™ Prgp(yy W ANAS(Pegyr(f)) ~1 w.

As with the above case, th€,-subdivision can be constructeddn|V|) time.

When a violation of Conditiorib) of Theorem 3.4 is detected Rrocedure Updat e- seq, Procedure
Report is called to generate B4-subdivision consisting of (Figure(&)):

e Pands(P) ~r t(P), such that’ = P,,,,), wheree,, is the parent edge abp.end.

e an earP with t(P) = s(seq) A s(P) < w,

e an earP; with s(Py) = w andt(Py) = top.SP, wheref = ear(e) for somee incident totop.end.

It is easily verified that thé{,-subdivision can be constructeddn(|V'|) time.

4.3.2 Generating aK> 3-subdivision

When a violation of Conditioria) of Theorem 3.5 is detected RProcedure Updat e- ear - of - par ent ,
ProcedureRepor t is called to generate &> 3-subdivision consisting of (Figure(4)):
® Pourvow) @A Peyr (0,
5(Pearwow)) T t(Pearvow)), 1f ear(v — w) < ear(w — u);
5(Pearw—u)) T U Pear(w—u)), Otherwise (in Figure 4(@Feq,(w—u) = Fj; disregardu).
It is easily verified that the aforementioned ears and teghspcan be generated@n(|V|) time.

When a violation of Conditioib) of Theorem 3.5 is detected RrocedureUpdat e- ear - of - par ent ,
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ProcedureRepor t is called to generate A 3-subdivision consisting of (Figure(#4)):

Pear(w—)u)» va S(Pear(v—m))) ~T U, S(Pear(v—m))) WPEM(UHM,) w, if ear(v — w) < ECLT‘(’LU — u),
Pear(v—)w)ypba S(Pear(w—m)) ~T v, S(Pear(w—)u))  Pear(wou) W otherwise.

Similar to the above case, tt#é, 3-subdivision can be constructedd(|V'|) time.

5 Authentication of the certificates

5.1 Positive certificate
Construction sequence:To authenticate the construction sequence, we use it tarashgadjacency lists
L(v),v € V, of G. If L is identical to the original (non-compact) adjacency listef G, we confirmG is
series-parallel. Otherwise, the certificate is rejectedis s done by traversing the decomposition tree in
post-order as follows:

At each vertex, letblk, = false if v can be the source or sink of &1 subgraphsy_ be the number
of SP subgraphs constructed thus far witlas the source;; be the number of P subgraphs constructed

as thus withw as the sink. Initiallyplk, = false,v_ = v, = 0. During the traversal, on encountering:

e a leaf node|/||u|e|v]: if blk, or blk, is true, reject the certificate (edge cannot be merged with
existing S P subgraphs). Otherwise, := v_ + 1,v; := vy + 1 indicating the number of P-
subgraphs with, as sourcet(as sink, respectively) is increased by one; d@ddnodes toZ}[v], 14

v-nodes tol[u];

e an internal nodgo||s|S|t|: let |i]|s|x|w| and |j|lw|x|t] (x € {S,P,e}) be its left and right child,

respectively. Leblk, := true (w can no longer be a source or sink after t8iS operation). If
w_ # 1 orw, # 1, then reject the certificate (there rema® subgraphs having as source or

sink which cannot be merged into the graph under constmi¢tatherwisew_ := wy := 0;

e an internal node0||s|P|t|: lets_ := s_ — 1,t; := t; — 1 indicating the number of P-subgraphs

with s as sourcet(as sink, respectively) is decreased by one.

When the traversal terminates at the root node, let the e he]@\. If not(r— = s, =1),0r
not(ry = s_ = 0), ornot(v— = vy = 0),VV \ {r, s}, reject the certificate as it generated a disconnected
graph which cannot b€ Otherwise, use radix sort to sort batlfv), and L[v], v € V, and then compare
them. ConfirmG is series-parallel if they are identical, reject the cexdife otherwise. This authentication

procedure clearly take3(|E|) time. Its correctness is easily verified.
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Although anSP, , hasx as source ang a sink, as it is constructed based on an ear with soyiaed
sink z, its source and sink argandz, respectively, upon completion. Fortunately, we do notdneeswap
the source and sink physically for each node in its decortipodree. What we need is to mark the root node
indicating that it is a root node and maintain a switegbup. Initially, swap := false. During the traversal,
when a marked node is entered, detap := not(swap). Then every nodé¢/[Ju[x|v| in the corresponding
decomposition tree is treated@s the source and is the sink if and only ikwap = true. When the traver-

sal backtracks from a marked node,detap := not(swap). LetSPy, ., SPyy yss- -, SPryyis- - SPay e

suchthatSP,, , ., is s-attached t& P, ,,,1 < i < k. Thenswap = fasle if and only if ; is odd.
Exterior boundary: Let the exterior boundary b@ : wq,ws, ..., wm,,w;. Based orC, a dfs is performed

over G to make the pathw,ws . .. w,, a dfs tree of G which includes verifyingV'| = m and every vertex
in G appears exactly once ifi. This takesO(|E|) time. In building thedfs tree, a ear-decomposition,
P;,1 < i < |E|—-|V]|+1, of G is created such tha?, is the cycleC and eachP;,i > 1, is a trivial
ear (i.e. a back-edge)attached ta”. ThenC' is the exterior boundary a¥ if and only if the trivial ears
P;,2 <i<|E|—|V|+1, can all be embedded into the interior faceCbif and only if no two of them are
interlacing. The last condition can be verified using thehoétfor detectingi4-subdivision inS P graphs
(see Section 4.1). Since the ears are all trivial and no ngrigin sequence is to be generated; and the
S P subgraphs stored on the stacks need not be representeddigpiesition trees but just by thespurce

andsink The correctness is obvious. The authentication of theiextieoundary thus takeS(|E|) time.

5.2 Negative certificate

Since ak4-subdivision consists of six vertex-disjoint paths shgufiour terminating-vertices, we first
verify that there are exactly four distinct terminatingti@s each of which is a common terminating vertex
of three paths and that no two paths have more then one conemainating vertices. This can be done
in O(1) time. Then, each path is traced using the adjacency list®esy internal vertex encountered is
marked to verify that the edges on the path are edgés afd the paths are vertex-disjoint except at their
terminating vertices. This can clearly be don&l|E|) time. Hence, verifying that the six paths areGn

takesO(|E|) time. Verifying aK> 3-subdivision can be done similarly @i (| £|) time.
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6 Non-biconnected graphs

6.1 Graphs with predesignated source and sink for SP graphs

We observed that i is SP and(r, s)P is the first edgélgorithm SP&Qut er pl anar uses to traversé,
the decomposition tree generated will makihe source and the sink and the last composition operation
performed iPC((r, s)P, seq), Whereseq is a construction sequence of thé subgraphG\{(r, s)}. Hence,
determining ifG is S P with predesignated soureeand sinkv can be reduced to determiningU {(u, v)}

is SP with sourceu and sinkv by starting thedfs with the edge(u,v). If the algorithm reports that
G U {(u,v)} is not aSP graph withu as source and as sink, then so is nat. Otherwise,seq is a

construction sequence 6f with v andv as the source and sink, respectively.

6.2 SP graphs

If G is not biconnected, since each biconnected componegtisfconnected to other biconnected compo-
nents through the cut-vertices it contains and the cuiesasrtmust be its terminals @& is SP, it is easily
verified that the biconnected componentssofan be connected as a chdin 1 < ¢ < h, such thatB; and
B;+1 share a common cut-vertex andc;, 1 < i < h, are distinct. Therefore, we can decompaésato its
biconnected components, construct a decomposition tremafih biconnected component, and then join the
decomposition trees with tH&C operation into a decomposition tree@f Note that forB;,2 <i < h —1,
the source and sink must bgandc; 1, respectively. The method described in Section 6.1, iening the
algorithm onB; U {(¢;, ¢;—1)}, can be used. FaB;, the source must bg but the sink can be any vertex
adjacent ta:; for By, the source can be any vertex adjacent,to; but the sink must bey,_; .

For B;,2 < i < h — 1, if a K4-subdivision containindc;, ¢;—1) is returned as a negative certificate
and(¢;, ¢;—1) is not an edge of3;, then theK,-subdivision is a negative certificate fé; U {(c;,c;—1)}
but not for B; as it is not a subgraph @;. Should that be the case, we return fkig-subdivision after the
edge(c;, ci—1) is removed as a negative certificate . This is justified by the following characterization

theorem for SP graph with designated source and sink.

Theorem 6.1. [3] A biconnected graph is not SP with soukcand sinkt if it contains a subdivision df)j’t,

where@j’t results from ak(, after the edge connecting two of its verticeand¢ is removed.
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6.3 Outerplanar graphs

Theorem 6.2.[8] A graph is outerplanar if and only if each of its biconnecteinponents is outerplanar.

If B; U{(ci,ci—1)},2 <1 < h,is SP with source; and sinke;_1, thenB; U {(¢;, ¢;—1)} is outerplanar
if and only if B; is outerplanar. The only if part is obvious. For the if pafts; is outerplanar, then the
edge(c;, ¢;—1) can always be embedded onto an interior fac&pt) {(¢;,c;—1)}. Otherwise, there must
exist an edgéz, y) with 2 andy lying on opposite sides of the exterior boundary divided:pgndc;_;.
But then the exterior boundary and the edgey) would form a©}"“~'-subdivision ofB;, contradicting
Theorem 6.1. Since edde;, ¢;—1) can always be embedded onto an interior fac&pt) {(c¢;,c;—1)}, the
exterior boundary o3; U {(c;, c;—1)} is that of B;.

In runningAlgorithm SP&Qut er pl anar , if the algorithm aborts execution and reports that,afor
some2 < k < h — 1, is not SP with source;, and sinkec;,_; based on Theorem 6.1 and not the discovery of
a K4-subdivision, therB;, k < i < h, could still be outerplanar. We will continue to test for aplanarity
from By, onwards but using3; instead ofB; U {(¢;, ¢i—1)}, k <i < h.

When aBj, U {(cx,cx—1)} is verified to be non-outerplanar by Id; 3-subdivision and not &-
subdivision, if theK 3-subdivision containgcy, cx—1) but (cx, cx—1) is not an edge of3;, then it is not
a negative certificate foBy. Fortunately, we can always replags,, ;1) with a path inBy, to turn the
K, 3-subdivision into a negative certificate fét,. This is accomplished as follows. First note thatis
the root of thedfs tree of B, and(cy — cx—1) is its only child edge becausBy; is biconnected. It;_;
has no child inBy, then By U {(cx, ck—1)} would consist of a set of parallel edges which is outerplanar
contradicting it is non-outerplanar. Letbe a child ofc;_; in By. Then the ear’,,, ) contains a
cp~c_1 path inBy. Itis easily verified that an internal vertex of thew-c;_, path would be a cut-vertex
of By, unless there are two interlacing earattached to the path or there is anotherc;,_; path inBy,. In
the former case, the interlacing ears give rise Kasubdivision, contradicting the assumption thatiip
subdivision was detected B, U {(cx, ck—1)}. In the latter case, assume without loss of generality tiet t
K, 3-subdivision is extended from the ed@e, ;1) into the firstc,~~c;,_; path. Then by the structure of
K, 3-subdivision and thef s tree, it is easily verified that th& 3-subdivision cannot be extended into the
seconde;, ~~ck—1 path. Hence, the eddey, cx—1) can be replaced by the second~c_; path, resulting
in a K5 3-subdivision ofB;,. Let e be the child edge of;,_; on the second;~-c;_; path. The path can be

determined irO(|V']) time using the back-edgeur(e).
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7 Recognition of generalized series-parallel graphs

Theorem 7.1.[29] A graph isGS P if and only if its biconnected components &® graphs.

Theorem 7.1 shows that the problem of recognizing GSP gregoinbe reduced to that of recognizing SP
graphs. The idea is to decompose the graphto its biconnected components, construct a decompositio
tree for each biconnected component usikigorithm SP&Outerplanar, and then connect the decompo-
sition trees using th&C or DC operation to form a GSP decomposition tree(of First, we shall give a
high-level description of the algorithm.

The depth-first-search-based algorithm for biconnegt{@B] is used to decompose the gra@hnto its
biconnected components and determine its cut-verticesedeah biconnected component, letritst vertex
be the cut-vertex through which th#s enters the biconnected component, or the root the depth-first
search tree if the biconnected component contaiff$e biconnected components with their respective root
vertex are added to a que(ein the order they are generated. Clearly, the one containiagntered last.

If the biconnected components (cut-vertices) form a chaidiscussed in Section 6.2, a fla@ is set
to true to indicate that;SP is set tofalse otherwise. In the former case, I8, B, ..., B; be the order
of the biconnected components@h whereB] is the first element (note thd; containsr). Owing to the
nature of depth-first searchs; contains exactly one cut-vertex. LBf be the other biconnected component
containing exactly one cut-vertex. Reverse the order obtbennected components {p starting fromB;,
to B; . Let the resulting ordered list ip be By, Bs, ..., B;,. ThenB; and B, shares a unique cut-vertex
¢i, 1 < i < h. Lete;41 be the root vertex 0B;, ¢ < i < h.

Remove the elements frof one at a time. LeB; be the biconnected component removed fi@rand
¢; be its root vertex. Execut@lgorithm SP&Outerplanar oB; to generate a decomposition trég;,, of
B; as follows:

(a) i = 1: executeAlgorithm SP&Outerplanar o3, with ¢; as source and as sink, wheréc,, x) is
any edge inB;. Attach7p, to ;.

(b) 1 <i < h: (i) SP = true: Tp;,1 < j <1, have been constructed and merged into a composition
tree7 with sourcec; 1 and sinkz via the SC operation. The tree is attacheddo ;. ExecuteAlgorithm
SP&Outerplanar oB; U {(¢;, ¢;—1)} with ¢; as source and;_; as sink. Wherp, is constructed, merge
T with Tp, by SC(75,, 7) and attach the resulting tree ¢ (ii) SP = false: if K4-found = false,

executeAlgorithm SP&Outerplanar oi3; U {(c;, z)} with ¢; as source and as sink, wheréc;, =) is any
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edge inB;. In the course of generatirifiz;, whenever a cut-verteX(# ¢;) is encountered, owing to the
properties of depth-first search af)dthe decomposition treg. for all the biconnected components whose
root vertex is a descendent dfmust have been constructed and attached. to
e ¢ is not the sink ofB;: 7. is merged with(¢’, p(c’))? via DC((¢, p(c'))P, T.) (recall thatp(c’) is the
parent of¢’) to form a GSP graph with soureéand sinkp(c’) (Figure 10(a));
e ( isthe sink ofB;: 7. is merged with7p, via SC(73,, T./) (Figure 10(b)).

@

N
[+[Weu] [eW-]

Figure 10: Connecting decomposition trees of biconnected components

When 7, is constructed, if there is a decomposition tfEeattached toc;, merge7 with 75, by
DC(T, Tg,) and attach the resulting treedp Otherwise, just attacfi, to ¢;.

(c)i = h: (i) SP = true: executeAlgorithm SP&Outerplanar oy, with s’ as source and,_; as
sink, wherg(s’, ¢;,_1) is any edge iB;,. WhenTp, is constructed, merge the decomposition ffegttached
to ¢,—1 with 7p, via SC(Tg,, T ). The resulting tree is a GSP decomposition tre&/ofii) SP = false:
executeAlgorithm SP&Outerplanar o3y, with r as source and as sink, wherér, x) is any edge in3y,.
Merge decomposition trees attached to its cut-verticesguitsie SC or DC operation as explained above.
WhenTg, is constructed, if- is not a cut-vertex, thefip, is a GSP decomposition tree 6t Otherwise,
merge the decomposition tr§eattached to- with 7, via DC(T, 7g, ). If Q is empty, the resulting tree is
a GSP decomposition tree 6f Otherwise, attach the resulting treerto

The two operations depicted in Figure 10 can be easily irratpd intoAlgorithm SP&Outerplanar

by modifying the statement marked Byas follows:

if (v = r) then if (w is a not cut-vertexjhen seq := PC((v, w)?, seq) Il (v,w)? € Ej;
elseseq := SC(PC((v,w)?, seq), Tw) I/ connectT,, to Tz, (= PC((v,w)?, seq)) via SC; (Figure 1Qb))
else if(w is not a cut-vertexphen seq := SC(seq, (w, v)?)
elseseq := SC(seq, DC((w,v)?, Tw)); Il attachT, to (w,v)? via DCfirst, then connecteq; (Figure 1Ga))

The decomposition tree is generalized to accommodatB@rmperation as follows:
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e 7 is a binary tree with0||s|D|¢| as the root;s, and7¢, as the left and right subtrees, respectively,

if G = DC(G1,G2), wheres is the common source @f; andGs, andt is the sink ofG .

CiyCi—1

In executingAlgorithm SP&Outerplanar, if &, -subdivision is detected iB;, S P is set tofalse,
andAlgorithm SP&Outerplanar is reinvoked aB; with ¢; as source and (instead ofc;_1) as sink such
that (c;, z) is an edge inB;. If a K -subdivision is detected, execution terminates withihesubdivision
returned as a negative certificate confirmirgs not GSP, SP or outerplanar.

The following is the pseudo code of the certifying algoritfon recognizing GSP, SP and outerplanar
graphs. The statements before tiepeat loop are self-explanatory. Thepeat loop runsAlgorithm
SP&Outerplanar on each biconnected compongntsVithin the loop, thehen part of the firsif statements
deals with the case when it is known ti@ais not SP. When &, 3-subdivision is found in5;, the secondf
statement checks if th&, 3-subdivision contains the edge;, ¢;_) that is not inB; and replaces that edge
with a path inB; accordingly (see Section 6.3). Whertka-subdivision is found inB;, thethen part of the
third if statement checks if thE,-subdivision is actually & ,-subdivision. If noK,-subdivision is found
in B;, theelsepart attaches the decomposition tfg¢ to ¢; according to the rules explained above. The

statements following theepeatloop generate the certificates.

Algorithm GSP/ SP/ Qut er pl anar
Input: The adjacency lists of a connected multigraph= (V, E).

Output:
Ts, (aGSP decomposition tree aff), if G is generalized series-parallel
a K4-subdivision of G, if G is not generalized series-parallel,
Ts, (aSP decomposition tree af), if G is series-parallel
a K4-subdivision of G, or
and a O3 -subdivision of G, or

three cut-vertices in a biconnected componer&ofor if G is not series-parallel,

a cut vertex in three distinct biconnected components of
the exterior boundary of an outerplanar embedding of if G is outerplanar
and a K4-subdivision of G, or if & is not outerolanar
a Ks 3-subdivision of G, P ’
begin
Convert the adjacency lists 6f into compact adjacency lisfs[w], Vw € V;
Ky-found := false; Ko 3-found := false; SP := true;
Use Tarjan’s algorithm [23] to determine the set of bicotedcomponent§ and the cut-vertices &F; the dfs starts fromr;
Insert the biconnected components with their root vertex@nqueue? in the order the biconnected components are generated;
if ((3B’ € G containing three cut-verticesv (3 a cut vertex belonging to three biconnected componerds inthen
SP := false; [/l G isnot series-parallel
LetG = {B; | 1 <i < h}; [l continue to check itz is GSP or outerplanar
elseorderG as a chaimB;,1 < ¢ < h, in Q such thatB;_, andB; share a cut-vertex;_1, andc;, 1 < ¢ < h, are distinct;
1:=0;
repeat // attempt to generate a GSP decomposition treé&for
i:=1+ 1; RemoveB; and its root cut-vertex from Q;
if (SP = false) then
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ExecuteAlgorithm SP&Outerplanar on inpuB; U {(c, z)} with ¢ as source, for some edde z) of B;, andc € {c;,r}
else //the biconnected components form a chain
if i = 1then
ExecuteAlgorithm SP&Outerplanar on inpuB; U {(c1, z)} with ¢; as source, for some edde,, =) of B;
else ifi = h then
ExecuteAlgorithm SP&Outerplanar on inpuB;, U {(s’, c,—1)} with ¢, as sink, for some edge’, c,—1) of By,
elseExecuteAlgorithm SP&Outerplanar on inpuB; U {(c;, ¢;—1)} with ¢; as source and;_; as sink;

if ((K2,3-found)A ~ (K4-found) ) then Il B; U{(ci, ci—1)} is not outerplanar but SP
if (the K> 3-subdivision, K> 3, returned byRepor t (K> 3) contains(c;, ¢;_1)) then
if ((¢i,ci—1) ¢ E) then Il (¢, ci—1) is not an edge iidx;
Let & be a child-edge of; _; that is not inKs s;
Replace(c;, c;i—1) with P4,z In Kos: /I generate the corred; 3-subdivision ofB;
if (K4-found) then
if (¢ ¢ {1,h} A SP)then I check if it is actually é4-subdivision ofB; that is found
if (the K4-subdivision, K4, returned byRepor t (K,) contains edgéc;, ¢;_1) which is not inB;) then
ReplaceK s with (Ki\{(ci,ci—1)}); Il generate®; "~ -subdivision

Ky-found := false; SP := false; i:=1—1; [/ ProcessB; again with a sink: where(c;, x) is an edge inB;
else if((¢; is a cut-vertexA (there is & attached te;)) then replace7 with DC(T, Tg,)
elseattached/ s, to c;;
until ((¢ = h) V K4-found);

if (~ (K2,3-found VvV Ks-found)) then connect the exterior boundary 85,1 < i < h, to form the exterior boundary @fF;

if (K4-found)) then output(the K4-subdivision); /IG is not GSP, SP, and OP
else if(SPA ~ K3 3-found) then output(7s, , the exterior boundary af); stop; // G is GSP, SP, and OP
if (SP A K3 3-found) then output(7s,; the K> 3-subdivision); stop; /I G is GSP, SP, and not OP
if (~ SPA ~ K3 3-found) then /I G is GSP, OP, and not SP

the ©4-subdivision, or
output(7sa, , the exterior boundary df; { three cut-vertices in a biconnected component, or  ); stop;
a cut vertex in three distinct biconnected components
if (~ SP A K3 3-found) then /I G is GSP, not SP and not OP
the ©4-subdivision, or
output(7m,,; thesz;,-subdivision,{ three cut-vertices in a biconnected component, or  ); stop;
a cut vertex in three distinct biconnected compongents
end.
Algorithm SP&Outerplanar has to be slightly modified as follows: in®s instruction K- found :=
true’ in between each occurrence Bépor t (K4) andstop; removeKy s3-found := false so thatK 3-

found will not be reset tof alse after ak, 3-subdivision is found.

Theorem 7.2. Algorithm GSP/SP/Outerplanar generates the certificates#an O(|V| + | E|) time.

Proof. The correctness of generating the negative certificateésdtidg GG is not SP before theepeatloop
and of generating the quewg so thatB; and B;; share a unique common cut-vertex1 < i < h, if
SP = true, are obvious. The correctness of tiepeat loop generating a decomposition tree(@if G is
SP or GSP, and the negative certificate§ i not GSP, SP, or outerplanar is easily verified by induation
1 based on the correctnessAifjorithm SP&OQuterplanar and Section 6. The correctness of gengrtitin
output by the last twif statements are also obvious.

Converting the adjacency list @ into compact adjacency lists také¥|V| + |E|) time. Since the

size of the compact adjacency-lists structure is bounde®@ ¥ |), decomposing= into the biconnected
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components and buildin@ take O(|V|) time. Generating the two types of negative certificates for S
graphs before theepeat loop clearly takesD(|V|) time. Therepeatloop takesO(|E;|) time per iteration
based on Theorems 4.3 and 4.6, Sections 4.3.1, 4.3.2 ancefe whis the edge set aB;. Therepeatloop
thus takesZ?:1 O(|E;|) = O(|V]) time. The last twaf statements clearly tak@(|V|) time. O

Authentication of the GSP decomposition tree is same asah&P graphs except that on encountering

an internal nodé0||s|D|t, lets_ := s_ — 1.

For each biconnected componeBt let ¢ be its source and be its sink. By Section 5.1, after the

traversal backtracked to the root noéic|x|z| of 75, c- = 2 = l,c4 = z_ = 0andv_ = vy =
0,v € Vp\ {c,z}. Letthere beh(> 1) biconnected components withas source and? be the first one
encountered (the case where= 1 is similar but simpler). Their decomposition trees are emted by a
chain ofh — 1 \@\ nodes. At each such node, since = 1 at each child node and_ is decreased
by 1 at the node;_ = 1 when the traversal backtracks from that nodec # r (the root of thedfs tree),
the traversal terminates at thl|c[D[x| node encountered last and = c_ = 1. Clearly,ry = c; = 0. If

¢ # r, (a) if cis not a sink, the parent node of th#|c|D|z| node encountered last [8]|c|D|p(c)| and the

sibling is |¢||c|e|p(c)| (Figure 1Qa)). Again, asc_ = 1 at|0||c|D|x| and|¢||c|e|p(c)| andc_ is decreased

by 1 at|0|lc|D|p(c)|, c— = 1 when the traversal backtracks frofdi|c|D|p(c)|. Sincec is not a sink,

|0]|c|D|p(c)| must have a parent nodié|y|S|p(c)| and a siblingk||y|x|c|. When the traversal backtracks to

[0lly|S|p(c)|, c—= = c4+ = 0 or the certificates is rejectedb) if c is a sink, let the corresponding source be

¢(= p(c)). Then, there exists a nod&|¢|S|x| with |0]|¢|P|c| as the left child andD||c|x|x| as the right child

(Figure 1Qb)). After the traversal backtracked to no@éc|S|x|, c— = ¢4 = 0 or the certificates is rejected.

For each sink: that is not a cut-vertex;,. = 1 andz_ = 0 remain unchanged. Hence, when the traversal
terminates at the root node||r|x|¢| of the decomposition tree @F, if (r— = 1 Av_ = 0,v € V \ {r})
1, wisasink and not a cut-vertex;

and (vy = A vy = 0,v is not a sink), then precede to check if
0, wvisasink and a cut-vertex.

E[v], v € V are adjacent lists aff as in Section 5.1; reject the certificate, otherwise.

The authentication of<, 3-subdivision, K,-subdivision,©4-subdivision are same as or similar to be-
fore. The authentication of the negative certificates iatilig G has three connected components sharing a
common cut-vertex or a connected component containing ttmevertices can clearly be doneGr{|V])

time.
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8 Conclusion

We presented the firg?(|V'| 4 | E'|)-time certifying algorithm for determining if a multigraghl = (V, E)

is generalized series-parallel and, if it is, to which sabslof generalized series-parallel grapghkelongs.
The algorithm only makes one pass overafter a preprocessing step. It also generates certificates f
verifying the correctness of the output. We also preseritedls authentication algorithms for verifying the

certificates.
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