
A linear-time certifying algorithm for recognizing
generalized series-parallel graphs

Francis Y.L. Chin∗, Hing-Fung Ting∗, Yung H. Tsin†, Yong Zhang‡

Abstract

The problems of recognizing series-parallel graphs, outerplanar graphs, and generalized series-parallel
graphs have been studied separately in the past. Efficient algorithms have been presented. However, none
of the algorithms are certifying. A certifying algorithm generates, in addition to its answer, a certificate
that can be used by a checker (a separate algorithm) to verifythe correctness of the answer. The certificate
is positive if the answer is ‘yes’, and is negative if the answer is ‘no’. In this paper, anO(|E|+ |V |)-time
certifying algorithm that simultaneously determines if a multigraph (a graph that may have parallel edges
but not self-loops)G = (V,E) is series-parallel, outerplanar, or generalized series-parallel is presented.
The positive certificates are a construction sequence for constructingG if G is series-parallel, a general-
ized construction sequence for constructingG if G is generalized series-parallel but not series-parallel,
and the edge set of the exterior boundary of an outerplanar embedding ofG if G is outerplanar. The
negative certificates are forbidden subgraphs or forbiddenstructures ofG. All these certificates are gen-
erated by making only one pass overG after a preprocessing step decomposingG into its biconnected
components.

Keywords: graph algorithm, certifying algorithm, recognition algorithm, ear-decomposition, depth-first
search, series-parallel graph, outerplanar graph, generalized series-parallel graph, forbidden structure,
certificate, certificate authentication.

1 Introduction

A major problem in software development is the correctness of software. Even after the designers proved

the correctness of their algorithm, there is no guarantee that the algorithm will be implemented correctly

as a program. This is particularly true for non-trivial algorithms as their implementation tends to be error-

prone. To eliminate the bugs (implementation errors) in theprogram, the implementer tests their program

with some test sets. Clearly, it is unlikely that they can eliminate all the bugs with this method. As a

consequence, when a user givesx as an input to the program and gets outputy, they usually cannot tell ify

is actually a correct output or is an incorrect output causedby an undetected bug in the program.

Kratsch et al. [13] addressed this problem by introducing certifying algorithms. Acertifying algorithm

is an algorithm that, on inputx, produces an outputy with a certificatew that the outputy is correct. By

∗Department of Computer Science, the University of Hong Kong, Hong Kong;{chin, hfting}@cs.hku.hk
†School of Computer Science, University of Windsor, Windsor, Ontario, Canada, N9B 3P4; peter@uwindsor.ca
‡Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; zhangyong@siat.ac.cn

checkingw with anauthentication algorithm(a program verifying thatw proves thaty is a correct output

for x), the user is certain thaty is the correct output for inputx. A major merit of this approach is that even

if the program is not bug-free, the user can be confident that the output they received for a particularly input

has not been compromised by a bug. Certifying algorithms have been used in the library LEDA [15].

It has been observed that many graph optimization problems that are NP-hard for arbitrary graphs can

be solved in polynomial time for some restricted classes of graphs which are of practical interest. Designing

algorithms that are capable of recognizing such restrictedclasses is of theoretical and practical importance.

These algorithms are calledrecognition algorithmsas they return a ‘yes’ if the input graph is in a restricted

class and a ‘no’ otherwise. A number of certifying algorithms for recognizing some classes of graphs have

been proposed [2, 4, 6, 13, 16]. In this paper, we study the recognition of three classes of graphs: series-

parallel graphs, outerplanar graphs and generalized series-parallel graphs. All of them have polynomial-time

algorithms for problems, such as the Hamiltonian cycle problem and the minimum vertex-cover problem,

which are NP-complete or NP-hard for general graphs [9, 18, 22].

The problem of determining if a graph is series-parallel hasbeen studied. Linear-time algorithms were

proposed [20, 26]. These algorithms are based on the following property of series-parallel graphs: a graph

G is series-parallel if and only if it can be reduced to the complete graphK2 by repeatedly applying the

following two operations:(i) replace a vertex of degree two and its two incident edges witha new edge,

(ii) replace two parallel edges with an edge connecting their common end-vertices. Since the algorithms

just output a ‘yes’ or ‘no’, they are not certifying. Likewise, a number of linear-time algorithms have been

proposed for recognizing outerplanar graphs. Brehaut [1] proposed two algorithms that both rely heavily

on the planarity testing algorithm of Hopcroft et al. [10] and are thus very complicated. Sysło et al. [21]

presented a simpler algorithm based on the property that a biconnected graph is outerplanar if and only if it

is a cycle or it can be reduced to a cycle by contracting maximal paths to edges. Mitchell [17] presented an

algorithm using the idea that a biconnected outerplanar graph can be transformed into a maximal outerplanar

graph which can be recognized by removing vertices of degree2 until only two adjacent vertices remain.

Wiegers [27] presented yet another algorithm by removing vertices of degree two or one until an edgeless

graph is obtained. None of the aforementioned algorithms produce an outerplanar embedding if the graph

is outerplanar and none of them are certifying. It is well-known that the problem of recognizing outerplanar

graphs can be reduced to that of recognizing planar graphs and the resulting algorithm can be made certify-

ing [14]. However, as the algorithm reduces the simple outerplanar graph recognition problem to the much

2

complicated planar graph recognition problem, and hence uses the complicated planarity testing algorithm

of Hopcroft et al., it is unnecessarily complicated in comparison with ours. Besides, it is not obvious as to

how to modify the algorithm so that it would determine ifG is series-parallel or generalized series-parallel at

the same time. Wimer and Hedetniemi [29] outlined a recognition algorithm for generalized series-parallel

graphs. Their algorithm is non-certifying and does not distinguish generalized series-parallel graphs that are

also series-parallel from those that are not.

Let SP, OP, andGSP be the class of series-parallel graphs, outerplanar graphs, and generalized series-

parallel graphs, respectively. It is known thatOP,SP $ GSP, OP " SP,SP " OP, andSP ∩ OP 6= ∅.

Hence,GSP can be partitioned into four subclasses (Figure 1). In this paper, we present the first certifying

recognition algorithm that determines if a multigraphG = (V,E) is GSP and if it is, to which subclass it

belongs inO(|V |+ |E|) time. For instance, ifG ∈ OP \ SP, then two positive certificates are generated for

its membership inGSP andOP and a negative certificate is generated for its non-membership in SP.

outerplanar
 (OP)

series-parallel
 (SP)

generalized series-parallel (GSP)

Figure 1: The classesSP, OP andGSP.

Our algorithm also differs from the existing non-certifying algorithms in the following ways: firstly, the

existing algorithms either use graph contraction techniques to reduce the given graph to a single edge, a

cycle, or an edgeless graph, or reduce the problem to the planar graph problem. It is not obvious as to how

to modify them to turn them into certifying algorithms. Our algorithm uses depth-first search to decompose

the given graph into a collection of paths based on which the desired certificates are generated. Secondly, as

is shown in Figure 1, the three classes of graphs are closely related. Therefore, the algorithms for solving

them should form a cohesive and succinct unit like ours. Thisis not the case for existing algorithms as

they were designed independently. Hence, while our algorithm makes only one pass over the graph, three

passes are required if existing algorithms are used. Thirdly, our depth-first-search-base path decomposition

technique might provide a basis for solving other graph-theoretic problems. Tsin [25] has recently used this

3

technique to develop a certifying algorithm for the 3-edge-connectivity problem. The algorithm shares a

characteristic of our algorithm in that it generates the 3-edge-connected components, a certificate for each

of them, a cactus representation of the cut-pairs if the graph is not 3-edge-connected, and all the bridges if

the graph is not 2-edge-connected seamlessly by making onlyone pass over the input graph.

This paper is organized as follows: Section 2 gives the definitions. Section 3 presents depth-first-search-

based characterization theorems for biconnected series-parallel graphs and outerplanar graphs. Section 4

presents a certifying algorithm for recognizing biconnected series-parallel graphs and outerplanar graphs.

Section 5 presents the authentication algorithms. Section6 generalizes Section 4 to handle non-biconnected

graphs. Section 7 presents a certifying algorithm for recognizing generalized series-parallel graphs, SP

graphs and outerplanar graphs, simultaneously.

2 Definitions

An undirected graph is represented byG = (V,E), whereV is the vertex set andE is the edge set. An

edge with end-verticesu andv is presented by(u, v) or (v, u). G is asimplegraph if it contains noparallel

edges(edges sharing the same end-vertices) norself-loops (edges whose end-vertices are identical).G is

a multigraph if it may contain parallel edges but not self-loops. Thedegreeof vertexw in G, denoted by

degG(w), is the number of edges havingw as an end-vertex.

A sequence of verticesv0v1 . . . vk is apath if (vi, vi+1) ∈ E, 0 ≤ i < k, andvi, 0 ≤ i < k, are distinct

exceptvk which may be identical tov0. The path is acycle if vk = v0 andk ≥ 2. The path is anull path

if k = 0. The path is also called av0 − vk path and verticesv0 andvk are itsterminating verticeswhile

vi, 1 ≤ i ≤ k−1, are itsinternal vertices. A graph isconnectedif for every two verticesu andv, there is an

u−v path. A graph is atree if it is connected and has no cycle. Acut-vertexin a connected graph is a vertex

whose removal results in a disconnected graph. A connected graph isbiconnectedif it has no cut-vertex.

A pair of vertices is aseparation pairof a connected graph if their removal results in a disconnected graph

and neither is a cut-vertex. A graphG′ = (V ′, E′) is asubgraphof G = (V,E) if V ′ ⊆ V andE′ ⊆ E. If

G′ is a tree andV ′ = V , then it is aspanning treeof G. A biconnected componentof a graph is a maximal

biconnected subgraph.

Traversing a graphG = (V,E) with a depth-first search [23] (henceforth abbreviated asdfs) creates

a spanning treeT = (V,ET), called thedepth-first search tree(abbr. dfs tree) ofG. T is a rooted tree

4

rooted at vertexr where the search begins. Every vertexu is assigned a distinct integer,dfs(u), called its

dfs number, which is its rank in the order the vertices are visited by thesearch for the first time. An edge

of G is a tree-edgeif it belongs toT and is aback-edgeotherwise. For allw ∈ V \ {r}, there is a unique

tree-edge(u,w) such thatdfs(u) < dfs(w). Vertexu is called theparent of w, denoted byparent(w),

while w is achild of u. Furthermore, the edge is theparent edgeof w and achild edgeof u. Since(u,w)

is the only parent edge ofw, it can be uniquely represented by(parent(w) → w). A leaf is a vertex with

no child. A tree-pathis a path inT . Vertexu is anancestorof vertexv, denoted byu � v, if and only if

u lies on ther − v tree-path. Vertexu is aproper ancestorof v, denoted byu ≺ v, if and only if u � v

andu 6= v. Vertexv is a (proper) descendantof u if and only if u is a (proper) ancestor ofv. Note that if

u ≺ v, thendfs(u) < dfs(v). Every back-edge connects an ancestor with a descendant. A back-edge(u, v)

is anoutgoing back-edge(incoming back-edge, resp.) ofu (v, resp.) ifv ≺ u. Theheightof a vertexv in

T is: height(v) = 0 if v is a leaf;height(v) = max{height(u) | u is a child ofv} + 1, otherwise. The

subtreeof T rooted at vertexw, denoted byTw, is the subgraph ofT induced by the set of descendants of

w. VTw denotes the vertex set ofTw. An embeddingof a graph is a graphical representation of the graph

on the plane. Aplanar embeddingis an embedding in which no two edges intersect except possibly at their

end-vertices. Afaceof a planar embedding is a maximal region of the plane that is bounded by some edges

of the graph and contains no edges within it; the edges form the boundaryof that face. Theexterior faceis

the face that has unbound area. Theexterior boundaryis the boundary of the exterior face. Anouterplanar

embeddingis a planar embedding in which all the vertices lie on the exterior boundary. Anedge-subdivision

is an operation that replaces an edge with a path of length twowhose internal vertex is a new vertex. A

subdivisionof a graphG is a graph that can be obtained fromG by a sequence of edge-subdivisions. The

graphK2,3 is the complete bipartite graph whose bipartition containstwo vertices in one set and three

vertices in the other set; the graphK4 is the complete graph with four vertices; (Figure 2).

K2,3 K4

Figure 2: The graphsK2,3 andK4.

In the sequel, an edge(u, v) ∈ E is denoted by(u → v) if it is a tree-edge withu as the parent, or by

(v x u) if it is an outgoing back-edge ofu. Moreover,s(v x u) = u andt(v x u) = v. A path withu

andv as terminating vertices and with an orientation fromu to v is denoted byu v with s(u v) = u;

5

t(u v) = v. If the path is a tree-path, it is denoted byu T v. If the path is a section of another pathP ,

it is also denoted byu P v.

An undirected multigraph is ageneralized series-parallel(abbr. GSP)graphwith sources and sinkt if

it can be constructed recursively as follows:

- Every edgee = (u, v) is a GSP graph withu designated as the source andv designated as the sink.

- LetG1 = (V1, E1) andG2 = (V2, E2) be two disjoint GSP graphs with sources1, sink t1, and sources2,

sink t2, respectively. A new GSP graph is created fromG1 andG2 by

• theseries compositionSC(G1, G2): identify t1 with s2 and designates1 andt2 as its source and sink

respectively, or

• theparallel compositionPC(G1, G2): identify s1 with s2 andt1 with t2, and designates1 andt1 as

its source and sink, respectively.

• thedangling compositionDC(G1, G2): identify s1 with s2, and designates1 andt1 as its source and

sink, respectively.

Removing theDC operation and replacing every occurrence of GSP with SP in the above definition,

we have the definition ofseries-parallel(abbr. SP) graph. Clearly, SP graphs are GSP graphs but not vice

versa. The sequence of composition operations used to construct a GSP (SP, respectively) graph is called a

construction sequenceof the graph.

An outerplanar graphis a graph that has an outerplanar embedding.

3 Characterization theorems

First, we shall consider how to recognize SP graphs and outerplanar graphs that are biconnected. Our

algorithm is based on open ear-decomposition of undirectedgraphs generated by depth-first search and the

following theorems that state forbidden subgraphs of SP graphs and outerplanar graphs.

Theorem 3.1. [3] A biconnected graph G isSP if and only if it does not contain a subdivision ofK4.

Theorem 3.2. [8] A biconnected graph G is outerplanar if and only if it does notcontain a subdivision of

K2,3 or K4.

6

Corollary 3.2.1. Every biconnected outerplanar graph isSP .

Definition: A ear-decompositionof a connected graphG = (V,E) is a partition ofE into a sequence of

edge-disjoint pathsPi, 1 ≤ i ≤ k, such that for everyPi, 2 ≤ i ≤ k, each terminating vertex ofPi lies on

anPj(j < i) and no internal vertex ofPi lies on anyPj(j < i). EachPi is called anear. Pi, 1 ≤ i ≤ k, is

anopen-ear decompositionif k = 1 andP1 is an edge, ork > 1, P1 is a cycle andPi, 2 ≤ i ≤ k, is a path

with distinct terminating vertices.

Lemma 3.3. [28] G is biconnected if and only if it has an open-ear decomposition.

Ear decompositions have been used to characterize several graph connectivity properties. Based on

these characterizations,O(lg n)-time parallel algorithms for recognizing the graph connectivity properties

on the PRAM have been developed [7, 11]. Eppstein showed thata biconnected graph is SP if and only if

it has anestedear decomposition and based on this characterization he designed anO(lg n)-time parallel

algorithm for the PRAM [5]. In the following, we give SP graphs a new characterization based on ear-

decomposition and depth-first search and then present a linear-time algorithm based on it. Since depth-first

search is inherently sequential [19] and our algorithm usesthe sequential date structurestackheavily, our

algorithm and Eppstein’s algorithm use completely different approaches. Moreover, Eppstein’s algorithm is

not certifying and does not recognize outerplanar graphs atthe same time.

Let G = (V,E) be a biconnected simple graph with|E| ≥ 2. By performing a depth-first search over

G, we can use thedfs numbers of the vertices to rank the back-edges as follows [24].

Definition: Let (q x p) and(y x x) be two back edges. Then(q x p) is lexicographically smaller than

(y x x), denoted by(q x p)⋖ (y x x), if and only if

(i) dfs(q) < dfs(y), or

(ii) dfs(q) = dfs(y) anddfs(p) < dfs(x) andp ⊀ x, or

(iii) dfs(q) = dfs(y) andx ≺ p.

Using the back-edges and their ranks in lexicographical order, the edges ofG can be partitioned into a

collection of edge-disjoint paths such that every path contains exactly one back-edge as follows: first recall

that every tree-edge can be uniquely represented by(parent(u) → u) for someu ∈ V . For each tree-edge

(parent(u) → u), we associate with it the lexicographically smallest back-edge(y x x) such thaty ≺

u � x. The back-edge exists becauseG is biconnected and|E| ≥ 2. It is easily verified that(y x x) and all

7

the tree-edges it is associated with form a pathyxw1w2 . . . wkv in G such thatvwk . . . w2w1x is v T x.

Furthermore, if(y x x) has the ranki lexicographically, we denote the path byPi : yxw1w2 . . . wkv and

let s(Pi) = y andt(Pi) = v. Hence the paths can also be ranked lexicographically. We also useP(yxx)

to denotePi. It is easily verified that the sequence of pathsPi, 1 ≤ i ≤ |E| − |V | + 1, is an open ear-

decomposition ofG. Pi is anon-trivial ear if it contains at least one tree-edge and is atrivial ear otherwise.

Notice that for each back edge(v x u), s(v x u) = u andt(v x u) = v, but when it is treated as a trivial

earP , s(P) = v andt(P) = u.

It is important to point out that the ear-decomposition is not generated explicitly. It is generated by

labeling every edgee ∈ E with the back edge that determines the ear containinge. This back edge, denoted

by ear(e), is determined during the depth-first search based on the following recursive definition:

ear(e) =

e if e ∈ E\ET ;

min⋖({f | f = (v x w) ∈ E\ET }∪

{ear(f) | f = (w → v) ∈ ET }), if e = (parent(w) → w) ∈ ET

For each vertexw(6= r), Let ear(parent(w) → w) = f ′. Then of all the ears that contain either a child

edge or an outgoing back edge ofw, Pf ′ is the only ear that can be extended to include the parent edgeof

w. The remaining ears all terminate atw.

Definition: A vertex v strongly belongs(or s-belongs) to P , denoted byv ∈s P , whereP is an ear or a

section of an ear if the parent edge ofv is an edge onP [16]. An earPi is strongly attached(or s-attach)

to P if t(Pi) ∈s P ands(Pi) belongs toP . An earPi is s∗-attachedto P if Pi is s-attached toP or Pi is

s-attached to an ear that iss∗-attached toP . Two earsPh andPk areinterlacing if they boths-attached to a

earPi such thats(Ph) ≺ s(Pk) ≺ t(Ph) ≺ t(Pk).

The following is a characterization theorem forSP graphs that is based on an open ear-decomposition

generated by a depth-first search and Theorem 3.1.

Theorem 3.4. LetP1, P2, · · · , P|E|−|V |+1 be the ears of a biconnected simple graphG = (V,E) generated

by a depth-first search in lexicographical order. ThenG is SP if and only if the following conditions hold:

(a) For every earPi, i > 1, there exists an earPj(j < i) to whichPi is s-attached;

(b) For every earPi, there do not exist two interlacing ears that are boths-attached toPi.

Proof. LetG be anSP graph.

8

(a) Suppose to the contrary that there exists anPi(i > 1) not s-attached to any earPh(h < i) (Fig-

ure 3(a)). Let t(Pi) ∈s Pj . Thens(Pi) does not belong toPj andPj⋖Pi imply thats(Pj) ≺ s(Pi) ≺

t(Pj). Moreover,t(Pi) ∈s Pj implies t(Pj) ≺ t(Pi). We thus haves(Pj) ≺ s(Pi) ≺ t(Pj) ≺ t(Pi).

Sinces(Pj) ≺ t(Pj), Pj 6= P1 which implies thatt(Pj) ∈s Pk, for somek < j. ThenPk ⋖Pj which

implies thats(Pk) � s(Pj). Clearly,s(Pj) T t(Pj) andPj form a circle which withPi, Pk and

s(Pk) T s(Pj) form aK4-subdivision, contradicting Theorem 3.1.

non-tree link

tree link(a)

x

Pi
b

a

c

d

Pj

Pk

t(P)j

t(P)i

t(P)k
s(P)j

s(P)i

s(P)k

b

a c

d

(b)

b

Pi

a
c

d

Pj

t(P)i

s(P)i

Ph Pk a

bc

d

Pi

bc
d

a

Pj

s(P)i

t(P)i Pk

Ph

Figure 3: Forbidden structureK4 minor.

(b) Suppose to the contrary that for somePi, there exist two interlacing earsPh andPk s-attached to

Pi. (Figure 3(b)) Then,Pi, Ph, Pk and s(Pi) T t(Pi) form a subdivision ofK4, contradicting

Theorem 3.1.

Conversely, suppose Conditions(a) and(b) hold forG = (V,E). LetGi, 1 ≤ i ≤ |E| − |V |+1, be the

graph consisting ofP1, P2, · · · , Pi. We shall apply induction oni to prove that eachGi is SP .

G1 is a cycle which is obviouslySP . Suppose the assertion holds fori < m(≥ 2). Consider adding

Pm to Gm−1. By the induction hypothesis,Gm−1 is SP . By Conditions(a), Pm is s-attached to an ear

Pj , j < m. If s(Pm) = s(Pj), then there is no earPi of Gm−1, hence ofG, such that(s(Pm) =)s(Pj) ≺

s(Pi) ≺ t(Pm) ≺ t(Pi) or Pm andPi would be interlacing ears, contradicting Condition(b). But then

Pm can be merged intoPj , first with aPC operation mergingPm with the SP subgraph consisting of

s(Pm) Pj
t(Pm) and all the earss*-attached to it, then with anSC operation joining the resultingSP -

subgraph with theSP -subgraph consisting oft(Pm) Pj
t(Pj) and all the earss*-attached to it. TheSP

graphGm is then formed. Ifs(Pm) 6= s(Pi), By Conditions(b), there is no earPi of Gm−1, hence ofG,

such thatt(Pi) (s(Pi), resp) is an internal vertex of the tree-paths(Pm) T t(Pm) while s(Pi) (t(Pi), resp)

lies outside the tree-path. Hence,{s(Pm), t(Pm)} is a separation pair partitioningGm−1 into two or more

connected components each of which is anSP graph witht(Pm) ands(Pm) as the source or sink. Since

9

non-tree link

tree link

(c)

y

x

w

Pi

y’

x’

u

Pj

(a)
y w

x’ or y’ x v

v

(b)

y

x

v

Pb

Pj

x’

y"

x"

w

Pk

xx’

w v

x" or y"

u

w

y

x

v

Pf

z

y
u∧

y

z w

u∧

Figure 4: A characterization of outerplanar graph.

Pm is anSP graph with sourcet(Pm) and sinks(Pm), it can be merged with thoseSP graphs with source

t(Pm) and sinks(Pm) to formGm.

For outerplanar graphs, we have the following characterization theorem whose correctness is based on

an open ear-decomposition generated by a depth-first searchand Theorem 3.2 [24].

Theorem 3.5. LetP1, P2, · · · , P|E|−|V |+1 be the ears of a biconnected simple graphG = (V,E) generated

by a depth-first search in lexicographical order. ThenG is not outerplanar if and only if one of the following

conditions holds(Figure 4):

(a) There exists a non-trivial earPi, i ≥ 2 such thats(Pi) 6= parent(t(Pi)), or

(b) ∃e ∈ ET for which there are two non-trivial earsPi, Pj such thate = (s(Pi) → t(Pi)) = (s(Pj) →

t(Pj)), or

(c) There is an earPi, i ≥ 1, to which two interlacing trivial ears are s-attached.

Condition (a) ((b), respectively) implies thatG contains aK2,3-subdivision (Figures 4(a),(b)) while

Condition(c) implies thatG contains aK4-subdivision (Figure 4(c)). By Theorem 3.2,G is not outerplanar.

4 Recognizing SP graphs and outerplanar graphs

Let G = (V,E) be a biconnected multigraph graph. Theunderlying simple graphof G is the simple graph

Gs = (V,Es) such that(u, v)ℓ ∈ Es if and only if verticesu andv are connected byℓ parallel(u, v) edges

in G. Specifically, every set ofℓ parallel(u, v) edges inG is replaced by a single edge(u, v)ℓ in Gs. The

graphGs can be represented by the following compact adjacency-lists structure:

• for each(u, v)ℓ ∈ Es, there exists|ℓ‖v| (|ℓ‖u|, respectively) in the adjacency listL[u] (L[v], respec-

tively) of u (v, respectively);|ℓ‖u| has a pointer pointing at|ℓ‖u|, and vice versa.

10

This compact adjacency-lists structure can be constructedin O(|E|) time by sortingE in lexicographical

order with radix sort following by a scan over the sorted list. It is easily verified thatG is SP (outerplanar,

respectively) if and only ifGs is SP (outerplanar, respectively). Hence, the problem of recognizing SP and

outerplanar multigraphs can be reduced to that of recognizing SP and outerplanar simple graphs. Theo-

rems 3.4 and 3.5, can thus be applied. Dealing withGs instead ofG not only simplifies the presentation of

our algorithms as we do not need to deal with parallel edges but also reduces the number ofPC operations

performed, hence the size of the data structure representing the construction sequence. SinceGs is a simple

graph, ifGs is SP or outerplanar, then|Es| ≤ 2|V | − 3 [12]. Hence, the size ofL[v], v ∈ V , is bounded by

O(|V |). This implies that using the compact adjacency lists, the recognition algorithms run inO(|V |) time.

Our algorithm performs a depth-first search overGs attempting to construct a construction sequence and

an exterior boundary ofGs. When the search backtracks to the rootr, if Gs is in SP ∩ OP, a construction

sequence and an exterior boundary ofGs are generated; ifGs is in SP \ OP, a construction sequence ofGs

and aK2,3-subdivision ofGs are generated. IfGs is not inSP, execution of the algorithm is aborted and a

K4-subdivision ofGs is generated. Note that for biconnected graphs,OP \ SP = ∅ by Corollary 3.2.1. For

clarify, we shall address how to recognize SP graphs and outerplanar graphs separately.

Since the parallel-edge countsℓ are kept in the nodes of the adjacency lists, the compact adjacency-lists

structure also representsG. Therefore, in the following discussion, we shall useG andGs interchangeably.

4.1 Recognizing series-parallel graphs

A construction sequence of an SP graphG can be conveniently represented by a binary treeTG, called a

decomposition tree(Figure 4), similar to that of minimal vertex series-parallel graph [26] as follows:

• TG consists of a single node|ℓ‖u|e|v|, if G is a set ofℓ parallel edges with sourceu and sinkv.

• TG is a binary tree with|0‖s|S|t| as the root,TG1 andTG2 as the left and right subtrees, respectively,

if G = SC(G1, G2), wheres is the source ofG1 andt is the sink ofG2.

• TG is a binary tree with|0‖s|P|t| as the root,TG1 andTG2 as the left and right subtrees, respectively,

if G = PC(G1, G2), wheres andt are the common source and sink ofG1 andG2, respectively.

Note that by replacing every|ℓ‖u|e|v| node with a binary tree consisting ofℓ leaf nodes|u|e|v| andℓ−1

internal nodes|u|P|v|; every|0‖s|S|t| with |s|S|t|, and every|0‖s|P|t| with |s|P|t|, we can turnTG into a

conventional decomposition tree inO(|E|) time.

In explaining how to generate a decomposition tree ofG in detail, the following notations will be used:

11

e : an edge
P: parallel composition
S: series-composition

eu w1ex u1

Sx w0 ex w2

qt

p2

Px w0 ew v1

Sx v0

s

Decomposition tree of seq = SC(PC(SC(t,q),p),s)2

 | | r SC(c , e)2

.end | .SP | .tail

 | SC(m,PC(g,SC(k ,h))) | SC(d ,f)2

stk :v
 | o | n topw4

2 2w3

w2

w1 | | SC(a,b) top3SC(j,i)stk :z

s(P)ear(v→w)

a

b

c

df
g h

km

n

op

w
v s

t
eseq

q

w0

w1
w2

w3

i

j

r

Pear(v→w)

t(P)ear(v→w)

z

=

u
w4x=

Figure 5: dfs backtracks fromw to v, thew-SPchain, stacksstkv, stkz and a decomposition tree ofseq.

SPx y: an SP subgraph consisting of the pathx y (which is a section of an ear) and all the ears

s*-attached to it. The source and sink ofSPx y arex andy, respectively.

SPx,y: anSP subgraph consisting of an earP and all the ears s*-attached toP , such thatx = t(P) is the

source andy = s(P) is the sink unlessy = r; thenr = s(P) is the source andx = t(P) is the sink.

BothSPx y andSPx,y are represented by decomposition tree.

At each vertexw, a stackstkw is maintained. An entryx on stkw has three fields:x.SP , x.end and

x.tail, wherex.SP = SPx,w, for somex, x.end = x, andx.tail = SPz x, for somez, or nil (Figure 5).

If G is SP, entryx′ is above entryx′′ on stku if and only if x′ ≺ x′′. When thedfs backtracks tow, all

theSP subgraphs stored onstkw are popped and merged to form a largerSP subgraph. The top entry is

represented bytop.

The key idea of the algorithm is to perform a depth-first search overG so that when thedfs backtracks

from a vertexw to its parentv, the parent edge(w, v)p and the section of earPear(v→w) from s(Pear(v→w))

to w and all the ears s*-attached to that section have been transformed into a chain of SP subgraphs, called

thew-SPchain,SPwi wi+1 , 0 ≤ i < k, andSPwk v , wherew0 = s(Pear(v→w)), such that (Figure 5):

(i) For each earPf that is nots-attached to the aforementioned section ofPear(v→w) but t(Pf) s-belongs

to that section ort(Pf) = w (note thats(Pf) ≺ w), the ear and all the ears s*-attached to it have been

transformed into anSPwi,s(Pf), for some1 ≤ i ≤ k, and stored asx.SP in some entryx on stackstks(Pf);

(ii) for eachwi, 1 ≤ i ≤ k, there is at least oneSPwi,s(Pf); (iii) everySPwi−1 wi
, 1 ≤ i ≤ k, is stored on

stks̃wi
astop.tail, wheres̃wi

= s(P
f̃
) andP

f̃
is the lexicographically smallest ear witht(P

f̃
) = wi. The

only SP subgraph that is not stored on any stack isSPwk v which is designated asseqw or seq. In Figure 5,

thew-SPchain consists ofSPw0 w1 = SC(a,b),SPw1 w2 = r, SPw2 w3 = SC(d2,f), SPw3 w4 = n, and

12

seq = SPw4 v = SC(PC(SC(t,q),p2),s). Thew-SPchain is constructed as follows:

Whenw is a leaf of thedfs tree,(a) if w has no outgoing back edge, then asG is biconnected,v = r

andG consists of the set of parallel edges(w, v)p, wherep ≥ 1. Hence(w, v)p represents a construction

sequence ofG and execution of the algorithm terminates.(b) if w has exactly one outgoing back edge

(u x w)ℓ, thew-SPchain consists ofSPu v(= seqw) = SC((u x w)ℓ, (w, v)p). In this case,k = 0. (c) If

w has more than one outgoing back edges, thew-SPchain consists ofSPũ w andSPw v, whereSPũ w =

(ũ x w)ℓ which is the lexicographicallysmallestoutgoing back edge ofw andSPw v = (w, v)p. Each

remaining outgoing back edge(u′ x w)h contributes oneSPw,u′ which is stored on stackstku′ . Moreover,

(ũ x w)ℓ is stored astop.tail on stackstks̃w . In this case,k = 1, w1 = w andseqw = (w, v)p.

Whenw is an internal vertex, when thedfs backtracks tow from a child vertexu, theu-SPchain has

been constructed. Stackstkw, if non-empty, is popped to extendsequ. If there is an ear interlacing with

some ears stored onstkw, it will be detected and aK4-subdivision is generated (Figure 6(a)). Otherwise,

whenstkw is emptied,(a) If t(ear(w → u)) ≻ t(ear(v → w)), theu-SPchain must consists of solelysequ

which is pushed onto stackstkt(ear(w→u)) or aK4-subdivision is returned (Figure 6(b)). (b) If t(ear(w →

3w
w1

P

w

s(P)

t(P)

top.end
2w

w0

4w

(a)

SP w〉2w = seq

Pf
P
∼

(b)

 w

SP w〉uh

w0

s(P)ear(w→u)

Pear(w→u)

 u

seq= u

P
∼

h u

 v

Figure 6: Detecting violation of Condition(a) and(b).

u)) ≺ t(ear(v → w)), then as with Case(a), the currentw-SPchain must consists of solelyseqw which is

pushed onto stackstkt(ear(v→w)) or aK4-subdivision is returned. Theu-SPchain then becomes the current

w-SPchain,seqw := sequ andear(v → w) := ear(w → u). (c) If t(ear(w → u)) = t(ear(v → w)),

then as with cases(a) and(b), theu-SPchain and the currentw-SPchain aresequ andseqw, respectively,

or aK4-subdivision is returned. The two SPchains are merged to form the currentw-SPchain consisting of

solelyseqw which is the SP subgraph:SPt(ear(v→w)) w = PC(seqw, sequ).

13

For each outgoing back edge(u x w)h of w, since the edge can be viewed as an SP chain consisting of

just (u x w)h, by lettingsequ = (u x w)h, the above procedure applies.

WhenL[w] is completely processed,(a) if v 6= r, then if there is no ear terminating atw, seqw :=

SC(seqw, (w, v)p) (i.e. extendseqw to include the parent edge); otherwise,seqw is stored astop.tail on

stackstks̃w , andseqw := (w, v)p. In either case, thedfs backtracks tov. (b) If v = r, thenseqw must be

the entirew-SPchain which is anSPr w. Hence, the instructionseqw = PC((v,w)p, seqw) producesseqw

as a construction sequence ofG.

The pseudo-code of the algorithm is given below. The main program and the initialization steps of

ProcedureGenCS are self-explanatory. Thefor loop in ProcedureGenCS processes the adjacency listL[w].

The if part of theif statement in the loop deals with the child vertices ofw while theelsepart deals with

the outgoing back edges ofw. ProcedureUpdate-seq pops stackstkw to updatesequ or generates aK4-

subdivision if a pair of interlacing ears is discovered. ProcedureUpdate-ear-of-parent determines

whetherseqw andsequ are to be merged or one of them is to be pushed on a stack, and generates aK4-

subdivision if the one to be pushed is not the entireu-SPchain or currentw-SPchain. Theif statement

following the for loop updatestop.tail on stackstks̃w if needed. The nextif statement completes the

construction of the construction sequence ifv = r, or extendseqw to include(w, v)p, otherwise. Note

that those instructions marked by• can be ignored for the time being as they are meant for recognizing

outerplanar graphs which will be explained later.

Algorithm SP&Outerplanar

Input: The compact adjacency listsL[w], ∀w ∈ V, of a biconnected multigraphG = (V,E).

Output:
{

seq (aSP decomposition tree ofG)
EB (the edge set of the exterior boundary of an outerplanar embedding ofG)

, if G is series-parallel and outerplanar,

or, seq (aSP decomposition tree ofG) and aK2,3 subdivision ofG, if G is series-parallel but not outerplanar,
or, aK4-subdivision ofG, if G is neither series-parallel nor outerplanar;

begin
for eachw ∈ V do dfs(w) := 0; // markw as unvisited

empty stkw;
count := 1; // dfs number

• K2,3-found := false; // K2,3-found is true iff a K2,3-subdivision has been found
GenCS(r,⊥, 0, seq); // ⊥ represents the undefinedparent(r);

end.

ProcedureGenCS(w, v, p, seq) // (w, v)p ∈ Es

begin
dfs(w) := count; count := count + 1; // assign adfs number tow
parent(w) := v;
if (w 6= r) then ear((v → w)) := ∞lex; // initialize ear(v → w); f ⋖∞lex,∀f ∈ E\ET

s̃w := ∞�; // initialize s̃w; u ≺ ∞�,∀u ∈ V
• b.alert(w) := false; // for detecting violation of Theorem 3.5(b)

seq := nil;

14

for each (|ℓ‖u| in L[w]) do // process the adjacency list ofw
if (dfs(u) = 0) then // u is unvisited

GenCS(u,w, ℓ, sequ);
Update-seq(w, sequ); // popstkw to updateseq
if (w 6= r) then Update-ear-of-parent(w → u, sequ, w, v, seq);

else if(dfs(u) < dfs(w)) ∧ (u 6= v) then // outgoing back-edge(u x w)ℓ

ear(u x w) := (u x w);
Update-ear-of-parent(ux w, (u x w)ℓ, w, v, seq);

if (w 6= r) then // extendseq to include(v → w)
if (s̃w 6= ∞�) then for stks̃w do top.tail := seq; seq := nil; // there is an ear terminating atw

◮ if (v = r) then seq := PC((v,w)p, seq) // generate thelastPC operation
elseseq := SC(seq, (w, v)p); // extendseq to include the parent edge ofw

• if (∼ (K2,3-found)) then // extend the exterior boundary;∼ is the logicalnegationoperator
• if (w 6= r) then
• case(number of children ofw) is
• 0: add(ear(v → w)) and(v → w) toEB; // Figure 8, Case 1
• 1: if (s(ear(v → w)) = w) then add(ear(v → w)) toEB; // Figure 8, Case 2(a)
• elseadd(v → w) toEB ; // Figure 8, Case 2(b)
end; // of GenCS

ProcedureUpdate-seq(w,seq)
begin // extendseq by merging allSP subgraphs stored onstkw with seq

while (stkw is non-empty) do
pop top from stackstkw;
if (source ofseq 6= top.end) then Report(K4); stop; // Return aK4-subdivision
seq := PC(seq, top.SP); if (top.tail 6= nil) then seq := SC(top.tail, seq);

end; // of Update-seq

ProcedureUpdate-ear-of-parent(f,sequ, w, v, seq)
begin

if (t(ear(f)) ≺ t(ear(v → w))) then // Case (b)
if (ear(v → w) 6= ∞lex) then // ear(v → w) is defined

• if (∼ (K2,3-found) ∧ s(ear(v → w)) 6= w) then // Pear(v→w) is non-trivial
• K2,3-Test((v → w), v, b.alert(w)); // Check forK2,3-subdivision

if (source ofseq 6= t(ear(v → w))) then Report(K4); stop;
else top.end := w; top.SP := seq; top.tail := nil; // pushseq ontostkt(ear(v→w))

push toponto stackstkt(ear(v→w));
s̃w := t(ear(v → w)); // updatẽsw

ear(v → w) := ear(f); seq := sequ; // updateear(v → w) andseq
else

if (source ofsequ 6= t(ear(f))) thenReport(K4); stop;
if (t(ear(f)) = t(ear(v → w)))) then // Case (c): seq andsequ have common source and sink

• if (∼ (K2,3-found)) then // Check forK2,3-subdivision
• if ((f is not a back-edge) ∧ (s(ear(v → w)) 6= w)) thenK2,3-Test(f, v, b.alert(w));

if (source ofseq 6= t(ear(v → w))) then Report(K4); stop;
elseseq := PC(seq, sequ);

if (ear(f) ⋖ ear(v → w)) then ear(v → w) := ear(f);
else // Case (a): t(ear(f)) ≻ t(ear(v → w))

• if (∼ (K2,3-found)) then
• if (f is not a back-edge)thenK2,3-Test(f, v, b.alert(w)); // Check forK2,3-subdivision

if (stkt(ear(f)) 6= ∅∧top.end = w) // sequ andtop.SP have common terminating vertices
then top.SP := PC(top.SP, sequ) // mergesequ with top.SP
else top.end := w; top.SP := sequ; top.tail := nil; // pushsequ onto stackstkt(ear(f))

push toponto stackstkt(ear(f));
s̃w := min�{s̃w, t(ear(f))}; // updatẽsw

end; // of Update-ear-of-parent

• ProcedureK2,3-Test(e, v, b.alert)
• begin

15

• if (t(ear(e)) 6= v) then Report(K2,3); // Theorem 3.5(a) is violated; return aK2,3-subdivision
• else if(b.alert) then Report(K2,3); // Theorem 3.5(b) is violated; return aK2,3-subdivision
• elseb.alert := true; // warning: a non-trivial earP with s(P) = v has been found; can’t have another
• b := ear(e); // for generating aK2,3-subdivision when Theorem 3.5(b) is violated
• end. // of K2,3-Test

Lemma 4.1. Let u be a child ofw. Let fi, 1 ≤ i ≤ q, be the set of incoming back-edges ofw such that

t(Pfi) = ui lies onPear(w→u) and ui � ui+1, 1 ≤ i < q. When thedfs backtracks fromu to w, let

SPui,w, 1 ≤ i ≤ q, be the SP subgraph constructed based on earPfi . If there is no earPf such thatt(Pf)

is an internal vertex ofw T uq and s(Pf) ≺ w, then on stackstkw, SPui,w, 1 ≤ i < q, lies above

SPui+1,w.

Proof. Since there is no earPf such thatt(Pf) is an internal vertex ofw T uq ands(Pf) ≺ w, therefore,

for eachfi, 1 ≤ i < q, there is no earP with t(P) = ui ands(P) ≺ w. This implies thatSPui,w is pushed

onto stackstkw after thedfs backtracks toui from its child onPear(w→u). Hence,SPui,w, 1 ≤ i < q, lies

aboveSPui+1,w onstkw.

Theorem 4.2. In the course of executingProcedure GenCS, when the dfs backtracks from vertexw to its

parent vertexv(6= r), the parent edge(w, v)p and the section of earPear(v→w), s(Pear(v→w)) Pear(v→w)

w, including all the ears s*-attached to that section have been transformed into a chain ofSP subgraphs,

SPwi wi+1 , 0 ≤ i < k, andSPwk v, wherew0 = s(Pear(v→w)) such that (Figure 7):

(i) for each earPf with t(Pf) ∈s Pear(v→w) such thatw0 ≺ s(Pf) ≺ w � t(Pf), Pf and all the other

ears with the same source and sink, and all the ears s*-attached to them have been transformed into

an SP subgraphSPwi,s(Pf), for somei, 1 ≤ i ≤ k, such that on stackstks(Pf), there is an entryx

with x.end = wi, x.SP = SPwi,s(Pf) and

x.tail =

SPwi−1 wi
, if t(f) = s̃i, wheres̃i = min�{t(f

′) | (f ′ ∈ E \ ET) ∧ t(Pf ′) = wi};

nil, otherwise.

(ii) ∀wi, 1 ≤ i ≤ k, ∃SPwi,s(Pf), with w0 ≺ s(Pf) ≺ w;

(iii) seq = SPwk v .

Proof. (By induction on the height ofw in T) Whenw is a leaf, based on the discussion given before

Algorithm SP&Outerplanar above, it is easily verify that the theorem holds forw.

Let w be an internal vertex ofT and(w, v)p ∈ Es. We shall call the chain ofSP subgraphs satisfying

Conditions(i)− (iii) thew-SPchain. Let|ℓ‖u| be the next node inL[w] such thatu 6= v.

16

}

t(P)ear(v→w)

}v w

w1

w0

w2

w3

s(P)ear(v→w)

Pear(v→w) SPw w
10

SPw w
32

SPw w
21seq }SPw ,s(P) f33

w ,s(P) f11
SP

w ,s(P) f22
SP

f2
f3

f1

s(P) f1

s(P) f3

s(P) f2

SPw w
21w ,s(P) f22

SPstk : ws(P) f2
2

w ,s(P) f11
SP SPw w

10
stk : ws(P) f1

1

f4
w ,s(P) f42

SPs(P) f4

=

SPw ,s(P) f33
SPw w

32
w3

stk : ws(P) f3
2 w ,s(P) f42

SP nil

w ,s(P) f22
SP

Figure 7: A chain ofSP subgraphs associated with vertexw

(i) If u is unvisited, thenu becomes a child ofw. When thedfs backtracks fromu to w, by the induction

hypothesis, theu-SPchain has been created. Let it beSPui ui+1 , 0 ≤ i < h, and(sequ =)SPuh w, where

u0 = s(Pear(w→u)). ProcedureUpdate-seq is then invoked to pop stackstkw. Let q, 1 ≤ q ≤ h be the

smallest index such thatSPuq ,w exists. If there is anSPuj ,z, q < j ≤ h, such thatz ≺ w, let it be the one

closest tow (Figure 6(a)). Letum be closest touj such thatm < j andSPum,w exists. Sincez ≺ w, SPuj ,z

is not onstkw. Therefore,s(ui.tail) � uj for every entryui above entryum on stkw. Hence, after all the

entries aboveum are popped,sequ becomes anSPuj w. Whenum is popped, asum.end = um 6= uj , a

K4-subdivision is returned. On the other hand, if there is noSPuj ,z, q < j ≤ h, such thatz ≺ w, then by

Condition(ii), SPui,w, q ≤ i ≤ h, exist. By Lemma 4.1, on stackstkw, SPui,w, q < i ≤ h, lies above

SPui+1,w. Hence, whenstkw is emptied,sequ is updated to anSPuq̂ w, whereq̂ ∈ {q, q−1} (depending on

whether∃SPuq,z with z ≺ w), and theu-SPchain becomesSPui ui+1 , 0 ≤ i < q̂, and(sequ =)SPuq̂ w.

It is easily verified that the modifiedu-SPchain satisfies Conditions(i)− (iii).

(a) If t(ear(v → w)) ≺ t(ear(w → u)), thensequ terminates atw. If q̂ 6= 0, then there is an

ear P̃ with t(P̃) = uq̂ such thatu0 ≺ s(P̃) ≺ w (Figure 6(b)). This ear violates Condition(a) of

Theorem 3.4. The algorithm thus terminates execution and returns aK4-subdivision. Otherwise, theu-

SPchain consists of justsequ(= SPu0 w = SPw,u0). If on stackstku0 , top.end = w, then top.SP is

replaced byPC(top.SP, sequ) as the two SP subgraphs have common source and sink. Otherwise, sequ is

pushed onto stackstku0 such thattop.SP = sequ, top.end = w and top.tail = nil. (b) If t(ear(w →

u)) ≺ t(ear(v → w)), let the currentw-SPchain beSPwi wi+1 , 0 ≤ i < p, and(seq =)SPwp w. Then

seq terminates atw. As with Case(a), p = 0 or a violation of Condition(a) of Theorem 3.4 is detected. In

17

the former case, the currentw-SPchain consists of justseq(= SPw0 w = SPw,w0) which is pushed onto

stackstkw0 such thattop.SP = seq, top.end = w andtop.tail = nil. Theu-SPchain then becomes the

currentw-SPchain andear(v → w) := ear(w → u), seq := sequ. (c) If t(ear(w → u)) = t(ear(v →

w)) (i.e. u0 = w0), then as with Cases(a) and(b), q̂ 6= 0 or p 6= 0 implies that there is an earP with

t(P) = uq̂ or t(P) = wp whereby violating Condition(a) of Theorem 3.4. The algorithm thus terminates

execution and return aK4-subdivision. Otherwise,seq = SPw0 w andsequ = SPu0 w which are merged

by seq := PC(seq, sequ), and the currentw-SPchain consists of justSPw0 w(= seq). Furthermore, if

ear(w → u)⋖ ear(v → w), thenear(v → w) := ear(w → u).

(ii) If u is visited, theu-SPchain isSPu0 w consisting of(u x w)ℓ andsequ = SPu0 w. The remaining

argument is same the above case whereu is unvisited.

WhenL[w] is completely processed, let the currentw-SPchain beSPwi wi+1 , 0 ≤ i < k, and(seq =

)SPwk w. The chain consists ofs(Pear(v→w)) Pear(v→w)
w and all the earss∗-attached to it.

For each earPf with t(Pf) ∈s Pear(v→w) such thatw0 ≺ s(Pf) ≺ w � t(Pf), if t(Pf) 6= w, then

Pf satisfies Conditions(i) by the induction hypothesis. Ift(Pf) = w, then from the above discussion, on

stackstks(Pf), top.SP = SPw,s(Pf) andtop.tail = nil. Furthermore, by a simple induction oni, wherei

is the number of nodes inL[w] that have been processed, it is easily verified thats̃w = min�{t(f
′) | (f ′ ∈

E \ ET) ∧ (t(Pf ′) = w)}. Hence, aftertop.tail := seq(= SPwk w) on stks̃w , Pf satisfies Conditions

(i). Condition(ii) is satisfied by the induction hypothesis and the existence ofSPw,s(P) if there existsP

with t(P) = w. Finally, asseq = nil if ∃P with t(P) = w, andseq = (wk w), otherwise, after

seq := SC(seq, (w, v)p), Condition(iii) clearly holds. Hence, when thedfs backtracks fromw to v, the

w-SPchain has been correctly generated.

Theorem 4.3. Algorithm SP&Outerplanar generates a construction sequence forG if G is SP or a K4-

subdivision ofG, otherwise, inO(|V |) time.

Proof. If G is notSP , then as was explained in the proof of Theorem 4.2, a violation of Condition(a)

or (b) of Theorem 3.4 will be detected and aK4-subdivision is returned. Otherwise, letw be the child of

the rootr (G is biconnected implies thatw is unique). Ifw has no children, thenG consists of a set ofp

parallel edges with end-verticesr andw. When thedfs reachesw, seq = nil. Sincev = r, therefore,

seq = PC(seq, (w, v)p) = (w, v)p which is a construction sequence ofG when thedfs backtracks tor.

If w has children. Letu be the child ofw lying on the earP1 (i.e. Pear(w→u) = P1). Since∄Pf with

18

r ≺ s(Pf) ≺ w, when the depth-first search backtracks fromu to w, Theorem 4.2(ii) implies that after

stkw is emptied theu-SPchain consists of solelysequ = SPr w. It follows that the currentw-SPchain

consists ofseq = SPr Pear(w→u)
w. Similarly, for each remaining childu′ of w, theu′-SPchain consists

of just sequ′ = SPr P
ear(w→u′)

w. Sinceseq andsequ′ have common sourcer and sinkw, sequ′ is merged

into seq by seq = PC(seq, sequ′). Therefore, afterL[w] is completely processed, the currentw-SPchain

consists ofseq = SPr w and the finalPC((r, w)p, seq) produces a construction sequence forG.

The initialization clearly takesO(|V |) time. ∀e ∈ E\ET , sinceear(e) = e, determiningear(e) takes

O(1) time. Determiningear(e),∀e ∈ ET , takesO(|V |) time during thedfs . By storingear(e), e ∈ ET , as

ear[w], wheree = (parent(w) → w), in an arrayear[1..|V |], retrievingear(e), s(ear(e)) andt(ear(e))

takesO(1) time each. By representing everySP subgraph with a decomposition tree that keeps its source

and sink at the root node, retrieving the source and sink of anSP subgraph, and performingSC(S1, S2),

PC(S1, S2) and determining their respective source and sink each takesO(1) time. Hence, excluding the

time spent on generating aK4-subdivision, ProcedureUpdate-ear-of-parent takesO(1) time and

thewhile loop in ProcedureUpdate-seq takesO(1) time per iteration.

For eachw ∈ V , The initialization steps in ProcedureGenCS takeO(1) time. The body of thefor

loop excluding the call to ProcedureUpdate-seq and the recursive call (which is charged to vertexu)

takesO(1) time. ProcedureUpdate-seq processes the entries on stackstkw. Since each entry on the

stack corresponds to a distinct incoming back-edge ofw and thewhile loop takesO(1) time per iteration,

the total time spent on ProcedureUpdate-seq for vertexw is thusO(degG(w)). Thefor loop thus takes
∑

u∈L[w]O(1) + O(degG(w)) = O(degG(w)) time. Theif statements following thefor loop takesO(1)

time. Hence,Algorithm SP&Outerplanar takes
∑

w∈V O(degG(w)) = O(|V |) time to generate anSP

construction sequence ifG is anSP graph.

If G is not anSP graph, as will be shown in Section 4.3.1, generating aK4-subdivision involves tracing

out at most three ears and a tree path which takesO(|V |) time. Hence, the algorithm takesO(|V |) time.

4.2 Recognizing Outerplanar graphs

The following lemma shows that thedfs-treeT of an outerplanar graph has a very simple structure.

Lemma 4.4. If G is outerplanar, every vertex has at most two children inT .

Proof. An immediate consequence of Theorem 3.5(a) and(b).

19

SinceG is outerplanar if and only if its underlying simple graph is outerplanar, in the algorithm presented

below, we disregard the parallel-edge countℓ in the nodes of the adjacency lists.

The algorithm is conceptually very simple. The exterior boundary is constructed during the depth-first

search in a bottom-up manner by starting from the leaves and gradually moving towards the root.

In general, at each leafw, the parent edge ofw and the lexicographically smallest outgoing back-edge

of w are added to the exterior boundary.

At each internal vertexw, owing to Lemma 4.4, only two cases are to be considered.

1. w has one child: let the child beu and(z x w) be the lexicographically smallest outgoing back-edge

of w. If (z x w) exists and(z x w)⋖ear(w → u), then(z x w) is added to the exterior boundary;

otherwise, the parent edge ofw is added.

2. w has two children: no edge incident onw is added to the boundary atw. Note that, however, two of

such edges must have been added to the boundary at some descendants ofw.

Clearly, the above method for determining the exterior boundary can be carried out concurrently with

the construction of theSP construction sequence. InAlgorithm SP&Outerplanar, the instructions for

constructing the exterior boundary are marked with a•. The flagsK2,3-found andb.alert(w) are used to

detect violation of Conditions(a) and(b) of Theorem 3.5. In ProcedureUpdate-ear-of-parent, the

newly inserted instructions are for detecting violation ofthe two conditions. Specifically, when a non-trivial

ear terminating atw is found, if the other terminating vertex of the ear is notparent(w), a violation of

Condition(a) is detected. Ifparent(w) is the other terminating vertex butb.alert(w) is true, a violation

of Condition(b) is detected; otherwise,b.alert(w) is set totrue. Note that detecting violation of Condition

(c) is taken care of by the part of the algorithm that constructs the decomposition tree.

Lemma 4.5. In the course of executingProcedure GenCS, ∀w ∈ V \{r}, when the depth-first search

backtracks from vertexw to its parent vertexv, letGw be the subgraph ofG consisting of:

• the cycle formed by the earPear(v→w) and the tree-paths(Pear(v→w)) T t(Pear(v→w)), and

• Pw = {P | (P is a non-trivial ear) ∧ (w � t(P))}.

LetEw
B be the set of edges added toEB while the dfs was traversingTw. ThenEw

B ands(Pear(v→w)) T

v form the exterior boundary of an outerplanar embedding ofGw.

20

Case 1:

w

parent(w)

z

v

=s(P)ear((v→w)) Pear((w→u))

w

u

v

z

w

u

v

z

Pear((w→u))

Case 2:

the boundary of G within the subtree Tw w

(a) (b)

Figure 8: Case 1:w has no child. Case 2:w has exactly one child.

Proof. (By induction on the height ofw in T) Whenw is a leaf, asPw = ∅, Gw is a cycle consisting

of Pear(v→w) ands(Pear(v→w)) T t(Pear(v→w)). Since(v → w) andear(v → w) are the two edges

added toEB, whereear(v → w) = (z x w) is the lexicographically smallest outgoing back-edge ofw,

Ew
B = {(v → w), (z x w)} (Figure 7, Case 1). As(v → w), (z x w) andz T v form Gw, and

(s(Pear(v→w)) T v) = (z T v), the lemma holds forw.

Whenw is an internal vertex ofT , first, consider the case wherew has exactly one childu. Let (z x w)

be the lexicographically smallest outgoing back-edge ofw. If z ≺ t(ear(w → u)), thent(Pear(w→u)) = w

(Figure 7, Case 2(a)). If s(Pear(w→u)) 6= v, a violation of Condition(a) of Theorem 3.4 is detected, and

the algorithm terminates execution and returns aK2,3-subdivision. Otherwise,Gu consists ofPear(w→u),

(v → w) andPu. SinceGw consists ofPear(v→w), s(Pear(v→w)) T t(Pear(v→w)) andPw; Pear(v→w)

ands(Pear(v→w)) T t(Pear(v→w)) are equivalent to(z x w), z T v, andv → w, it follows thatGw

consists of(z x w), z T v, v → w, andPw. ThenPw = Pu ∪ {Pear(w→u)} implies thatGw consists of

(z x w), z T v, v → w,Pu andPear(w→u) which implies thatGw consists of(z x w), z T v andGu.

By the induction hypothesis,Eu
B and(v → w) form the exterior boundary of an outerplanar embedding of

Gu. Therefore, by embedding(z x w) andz T v onto the exterior face of the planar embedding ofGu

and connecting them to the latter at verticesw andv, we obtain an outerplanar embedding ofGw. Since

ear(v → w)(= (z x w)) was added toEu
B at w, Ew

B = Eu
B ∪ {(z x w)}. This implies thatEw

B and

z T v(= s(Pear(v→w)) T v) form the exterior boundary of an outerplanar embedding ofGw.

On the other hand, if(z x w) does not exist ort(ear(w → u)) � z, thenear(v → w) = ear(w → u)

21

Case 3:

u1

w

v

Pear((v→w))

the boundary of G within the subtree Tw w

(a) (b)

u1

w

v

u2

Pear((v→w))

Pear((v→))u2

Figure 9: w has exactly two children.

which implies thatPear(v→w) = Pear(w→u) (Figure 7, Case 2(b)). Therefore,Gw consists ofPear(v→w),

s(Pear(v→w)) T t(Pear(v→w)) andPw implies thatGw consists ofPear(w→u), s(Pear(w→u)) T t(Pear(w→u))

andPw. Sincew has only one child, thereforePw = Pu which implies thatGw consists ofPear(w→u),

s(Pear(w→u)) T t(Pear(w→u)) andPu. It follows thatGw = Gu. Since by the induction hypothesis,

Gu has an outerplanar embedding,Gw thus has an outerplanar embedding. Moreover, by the induction

hypothesis,Eu
B ands(Pear(w→u)) T w form the exterior boundary of the outerplanar embedding ofGu

and hence ofGw. As Ew
B = Eu

B ∪ {(v → w)} ands(Pear(w→u)) T w consists ofs(Pear(v→w)) T v

and(v → w), Ew
B ands(Pear(v→w)) T v form the exterior boundary of the outerplanar embedding of

Gw. The assertion thus holds forw.

Next, consider the case wherew has exactly two childrenu1 andu2 such thatear(w → u1)⋖ear(w →

u2). ThenGu1 consists ofPear(w→u1), s(Pear(w→u1)) T t(Pear(w→u1)) andPu1 . Similarly,Gu2 consists

of Pear(w→u2), s(Pear(w→u2)) T t(Pear(w→u2)) andPu2 (Figure 8). Sinceear(w → u1)⋖ear(w → u2),

t(Pear(w→u2)) = w ands(Pear(w→u2)) = v, or a violation of Condition(a) of Theorem 3.5 is detected.

Therefore,Gu2 consists ofPear(w→u2), v → w andPu2 . Moreover,Pear(v→w) = Pear(w→u1).

Now,Gw consists ofPear(v→w), s(Pear(v→w)) T t(Pear(v→w)) andPw. SincePear(v→w) = Pear(w→u1)

andPw = Pu1 ∪ Pu2 ∪ {Pear(w→u2)}, it follows that Gw consists ofPear(w→u1), s(Pear(w→u1)) T

t(Pear(w→u1)),Pu1 ,Pu2 andPear(w→u2) or equivalently,Gu1 , andGu2 excludingv → w.

22

By the induction hypothesis,Eu1
B ands(Pear(w→u1)) T w form the exterior boundary of an outerpla-

nar embedding ofGu1 ; Eu2
B andv → w form the exterior boundary of an outerplanar embedding ofGu2 .

By embeddingGu2 onto the exterior face of the planar embedding ofGu1 and connecting the two plane

graphs at verticesv andw, we obtain a planar embedding ofGw. SinceEw
B = Eu1

B ∪Eu2
B , this immediately

implies thatEw
B ands(Pear(v→w)) T v form the exterior boundary of an outerplanar embedding ofGw.

The lemma thus holds forw.

Theorem 4.6. Algorithm SP&Outerplanar generates the exterior boundaryof an outerplanar embedding

ofG if G is outerplanar, or aK4-subdivision orK2,3-subdivision ofG, otherwise, inO(|V |) time.

Proof. If G is not outerplanar, then as was explained in the proof of Theorem 4.5, a violation of Condition

(a) or (b) of Theorem 3.5 will be detected (violation of Condition(c) is taken care of by that part of the

algorithm forSP graphs). Otherwise, letw be the child of the rootr. ThenPear(r→w) = P1. By Lemma 4.5,

when thedfs backtracks fromw to r, Ew
B(= EB) forms the exterior boundary of an outerplanar embedding

of Gw. SinceGw consists ofP1 andPw,G andGw differ in only the trivial ears which can be embedded into

the interior faces of the outerplanar embedding ofGw because no violation of Condition(c) was detected.

HenceEB is the edge set of the exterior boundary of an outerplanar embedding ofG.

The initialization related to outerplanar testing clearlytakesO(|V |) time. In ProcedureGenCS, since

the instructions for testing outerplanarity (marked by•’s) takeO(1) time for eachw ∈ V \ {r}, Proce-

dure GenCS, excluding the time spent on detectingK2,3-subdivision, takesO(|V |) time. To detectK2,3-

subdivision, the instructions inProcedureUpdate-end-of-parent (marked by•’s) takeO(1) time

for eachu ∈ L[w]. ProcedureK2,3-Test excluding the time spent on Report(K2,3) takesO(1) for each

e ∈ ET . DetectingK2,3-subdivision thus takes a total ofO(|V |) time. As will be shown in Section 4.3.2,

generating aK2,3-subdivision involves tracing out at most two ears and two tree-paths.ProcedureReport

thus takesO(|V |) time. DetectingK4-subdivision is taken care of when the algorithm is checkingif G is

series-parallel. Hence,Algorithm SP&Outerplanar takesO(|V |) time on outerplanarity testing.

4.3 Generating forbidden subgraphs

4.3.1 Generating aK4-subdivision

When a violation of Condition(a) of Theorem 3.4 is detected inProcedureUpdate-ear-of-parent,

if it is caused by the condition ‘source ofsequ(= uh) 6= t(ear(f))’, then f = (w → u) andProcedure

23

Report is called to generate aK4-subdivision consisting of (Figure 6(b)):

• Pear(w→u) and the lexicographically smallest earP̃ with t(P̃) = uh ∧ s(Pear(w→u)) ≺ s(P̃);

• s(Pear(v→w)) Pear(v→w)
w ands(Pear(v→w)) T w.

The earPear(w→u) can be generated by starting from the back-edgeear(w → u), using the array

parent[z],∀z ∈ V, to determine the tree-edges on it until vertexw is reached. The paths(Pear(v→w)) Pear(v→w)

w can be generated similarly. The paths(Pear(v→w)) T w can be generated similarly by starting from

w. To determineP̃ , we determinẽe such thatear(ẽ) = min⋖{ear(e) | (e = (uh → y) ∨ e = (y x

uh)) ∧ (t(ear(w → u)) ≺ t(ear(e)))}. ThenP̃ = Pear(ẽ) which can be generated similar toPear(w→u).

Since all of the above steps takeO(|V |) time, TheK4-subdivision can be constructed inO(|V |) time.

If it is caused by the condition ‘source ofseq(= wk) 6= t(ear(v → w))’, then ProcedureReport is

called to generate aK4-subdivision consisting of:

• Pear(v→w) and the lexicographically smallest earP̃ with t(P̃) = wk ∧ s(Pear(v→w)) ≺ s(P̃);

• s(Pear(f)) Pear(f)
w ands(Pear(f)) T w.

As with the above case, theK4-subdivision can be constructed inO(|V |) time.

When a violation of Condition(b) of Theorem 3.4 is detected inProcedureUpdate-seq, Procedure

Report is called to generate aK4-subdivision consisting of (Figure 6(a)):

• P ands(P) T t(P), such thatP = Pear(eh), whereeh is the parent edge oftop.end.

• an earP̃ with t(P̃) = s(seq) ∧ s(P̃) ≺ w,

• an earPf with s(Pf) = w andt(Pf) = top.SP , wheref = ear(e) for somee incident totop.end.

It is easily verified that theK4-subdivision can be constructed inO(|V |) time.

4.3.2 Generating aK2,3-subdivision

When a violation of Condition(a) of Theorem 3.5 is detected inProcedureUpdate-ear-of-parent,

ProcedureReport is called to generate aK2,3-subdivision consisting of (Figure 4(a)):

• Pear(v→w) andPear(w→u),

•

s(Pear(v→w)) T t(Pear(v→w)), if ear(v → w)⋖ ear(w → u);

s(Pear(w→u)) T t(Pear(w→u)), otherwise (in Figure 4(a),Pear(w→u) = Pj ; disregardu).

It is easily verified that the aforementioned ears and tree-paths can be generated inO(|V |) time.

When a violation of Condition(b) of Theorem 3.5 is detected inProcedureUpdate-ear-of-parent,

24

ProcedureReport is called to generate aK2,3-subdivision consisting of (Figure 4(b)):

•

Pear(w→u), Pb, s(Pear(v→w)) T v, s(Pear(v→w)) Pear(v→w)
w, if ear(v → w)⋖ ear(w → u);

Pear(v→w), Pb, s(Pear(w→u)) T v, s(Pear(w→u)) Pear(w→u)
w, otherwise.

Similar to the above case, theK2,3-subdivision can be constructed inO(|V |) time.

5 Authentication of the certificates

5.1 Positive certificate

Construction sequence:To authenticate the construction sequence, we use it to construct adjacency lists

L̂(v), v ∈ V, of G. If L̂ is identical to the original (non-compact) adjacency listsL̃ of G, we confirmG is

series-parallel. Otherwise, the certificate is rejected. This is done by traversing the decomposition tree in

post-order as follows:

At each vertexv, let blkv = false if v can be the source or sink of anSP subgraphs,v− be the number

of SP subgraphs constructed thus far withv as the source,v+ be the number ofSP subgraphs constructed

as thus withv as the sink. Initially,blkv = false, v− = v+ = 0. During the traversal, on encountering:

• a leaf node|ℓ‖u|e|v|: if blku or blkv is true, reject the certificate (edgee cannot be merged with

existingSP subgraphs). Otherwise,u− := u− + 1, v+ := v+ + 1 indicating the number ofSP -

subgraphs withu as source (t as sink, respectively) is increased by one; addℓ u-nodes toL̂[v], ℓ

v-nodes toL̂[u];

• an internal node|0‖s|S|t|: let |i‖s|χ|w| and |j‖w|χ|t| (χ ∈ {S,P,e}) be its left and right child,

respectively. Letblkw := true (w can no longer be a source or sink after thisSC operation). If

w− 6= 1 or w+ 6= 1, then reject the certificate (there remainsSP subgraphs havingw as source or

sink which cannot be merged into the graph under construction); otherwise,w− := w+ := 0;

• an internal node|0‖s|P|t|: let s− := s− − 1, t+ := t+ − 1 indicating the number ofSP -subgraphs

with s as source (t as sink, respectively) is decreased by one.

When the traversal terminates at the root node, let the root node be|0‖r|P|s|. If not(r− = s+ = 1), or

not(r+ = s− = 0), ornot(v− = v+ = 0),∀V \ {r, s}, reject the certificate as it generated a disconnected

graph which cannot beG. Otherwise, use radix sort to sort bothL̂(v), andL̃[v], v ∈ V, and then compare

them. ConfirmG is series-parallel if they are identical, reject the certificate otherwise. This authentication

procedure clearly takesO(|E|) time. Its correctness is easily verified.

25

Although anSPx,y hasx as source andy a sink, as it is constructed based on an ear with sourcey and

sinkx, its source and sink arey andx, respectively, upon completion. Fortunately, we do not need to swap

the source and sink physically for each node in its decomposition tree. What we need is to mark the root node

indicating that it is a root node and maintain a switchswap. Initially, swap := false. During the traversal,

when a marked node is entered, letswap := not(swap). Then every node|ℓ‖u|χ|v| in the corresponding

decomposition tree is treated asv is the source andu is the sink if and only ifswap = true. When the traver-

sal backtracks from a marked node, letswap := not(swap). LetSPx1,y1 , SPx2,y2 , . . . , SPxi,yi , . . . SPxk,yk

such thatSPxi+1,yi+1 is s-attached toSPxi,yi , 1 ≤ i < k. Thenswap = fasle if and only if i is odd.

Exterior boundary: Let the exterior boundary beC : w1, w2, . . . , wm, w1. Based onC, adfs is performed

overG to make the pathw1w2 . . . wm a dfs tree ofG which includes verifying|V | = m and every vertex

in G appears exactly once inC. This takesO(|E|) time. In building thedfs tree, a ear-decomposition,

Pi, 1 ≤ i ≤ |E| − |V | + 1, of G is created such thatP1 is the cycleC and eachPi, i > 1, is a trivial

ear (i.e. a back-edge)s-attached toC. ThenC is the exterior boundary ofG if and only if the trivial ears

Pi, 2 ≤ i ≤ |E| − |V |+ 1, can all be embedded into the interior face ofC if and only if no two of them are

interlacing. The last condition can be verified using the method for detectingK4-subdivision inSP graphs

(see Section 4.1). Since the ears are all trivial and no construction sequence is to be generated,seq and the

SP subgraphs stored on the stacks need not be represented by decomposition trees but just by theirsource

andsink. The correctness is obvious. The authentication of the exterior boundary thus takesO(|E|) time.

5.2 Negative certificate

Since aK4-subdivision consists of six vertex-disjoint paths sharing four terminating-vertices, we first

verify that there are exactly four distinct terminating vertices each of which is a common terminating vertex

of three paths and that no two paths have more then one common terminating vertices. This can be done

in O(1) time. Then, each path is traced using the adjacency lists andevery internal vertex encountered is

marked to verify that the edges on the path are edges ofG and the paths are vertex-disjoint except at their

terminating vertices. This can clearly be done inO(|E|) time. Hence, verifying that the six paths are inG

takesO(|E|) time. Verifying aK2,3-subdivision can be done similarly inO(|E|) time.

26

6 Non-biconnected graphs

6.1 Graphs with predesignated source and sink for SP graphs

We observed that ifG isSP and(r, s)p is the first edgeAlgorithm SP&Outerplanaruses to traverseG,

the decomposition tree generated will maker the source ands the sink and the last composition operation

performed isPC((r, s)p, seq), whereseq is a construction sequence of theSP subgraphG\{(r, s)}. Hence,

determining ifG isSP with predesignated sourceu and sinkv can be reduced to determining ifG∪{(u, v)}

is SP with sourceu and sinkv by starting thedfs with the edge(u, v). If the algorithm reports that

G ∪ {(u, v)} is not aSP graph withu as source andv as sink, then so is notG. Otherwise,seq is a

construction sequence ofG with u andv as the source and sink, respectively.

6.2 SP graphs

If G is not biconnected, since each biconnected component ofG is connected to other biconnected compo-

nents through the cut-vertices it contains and the cut-vertices must be its terminals ifG is SP, it is easily

verified that the biconnected components ofG can be connected as a chainBi, 1 ≤ i ≤ h, such thatBi and

Bi+1 share a common cut-vertexci, andci, 1 ≤ i < h, are distinct. Therefore, we can decomposeG into its

biconnected components, construct a decomposition tree for each biconnected component, and then join the

decomposition trees with theSC operation into a decomposition tree ofG. Note that forBi, 2 ≤ i ≤ h− 1,

the source and sink must beci andci−1, respectively. The method described in Section 6.1, i.e. running the

algorithm onBi ∪ {(ci, ci−1)}, can be used. ForB1, the source must bec1 but the sink can be any vertex

adjacent toc1; for Bh, the source can be any vertex adjacent toch−1 but the sink must bech−1 .

For Bi, 2 ≤ i ≤ h − 1, if a K4-subdivision containing(ci, ci−1) is returned as a negative certificate

and(ci, ci−1) is not an edge ofBi, then theK4-subdivision is a negative certificate forBi ∪ {(ci, ci−1)}

but not forBi as it is not a subgraph ofBi. Should that be the case, we return theK4-subdivision after the

edge(ci, ci−1) is removed as a negative certificate forBi. This is justified by the following characterization

theorem for SP graph with designated source and sink.

Theorem 6.1. [3] A biconnected graph is not SP with sources and sinkt if it contains a subdivision ofΘs,t
4 ,

whereΘs,t
4 results from aK4 after the edge connecting two of its verticess andt is removed.

27

6.3 Outerplanar graphs

Theorem 6.2. [8] A graph is outerplanar if and only if each of its biconnected components is outerplanar.

If Bi ∪ {(ci, ci−1)}, 2 ≤ i < h, is SP with sourceci and sinkci−1, thenBi ∪ {(ci, ci−1)} is outerplanar

if and only if Bi is outerplanar. The only if part is obvious. For the if part, if Bi is outerplanar, then the

edge(ci, ci−1) can always be embedded onto an interior face ofBi ∪ {(ci, ci−1)}. Otherwise, there must

exist an edge(x, y) with x andy lying on opposite sides of the exterior boundary divided byci andci−1.

But then the exterior boundary and the edge(x, y) would form aΘci,ci−1

4 -subdivision ofBi, contradicting

Theorem 6.1. Since edge(ci, ci−1) can always be embedded onto an interior face ofBi ∪ {(ci, ci−1)}, the

exterior boundary ofBi ∪ {(ci, ci−1)} is that ofBi.

In runningAlgorithm SP&Outerplanar, if the algorithm aborts execution and reports that aBk, for

some2 ≤ k ≤ h− 1, is not SP with sourceck and sinkck−1 based on Theorem 6.1 and not the discovery of

aK4-subdivision, thenBi, k ≤ i ≤ h, could still be outerplanar. We will continue to test for outerplanarity

from Bk onwards but usingBi instead ofBi ∪ {(ci, ci−1)}, k ≤ i ≤ h.

When aBk ∪ {(ck, ck−1)} is verified to be non-outerplanar by aK2,3-subdivision and not aK4-

subdivision, if theK2,3-subdivision contains(ck, ck−1) but (ck, ck−1) is not an edge ofBk, then it is not

a negative certificate forBk. Fortunately, we can always replace(ck, ck−1) with a path inBk to turn the

K2,3-subdivision into a negative certificate forBk. This is accomplished as follows. First note thatck is

the root of thedfs tree ofBk and(ck → ck−1) is its only child edge becauseBk is biconnected. Ifck−1

has no child inBk, thenBk ∪ {(ck, ck−1)} would consist of a set of parallel edges which is outerplanar,

contradicting it is non-outerplanar. Letu be a child ofck−1 in Bk. Then the earPear(ck−1→u) contains a

ck ck−1 path inBk. It is easily verified that an internal vertex of theck ck−1 path would be a cut-vertex

of Bk unless there are two interlacing earss-attached to the path or there is anotherck ck−1 path inBk. In

the former case, the interlacing ears give rise to aK4-subdivision, contradicting the assumption that noK4-

subdivision was detected inBk ∪ {(ck, ck−1)}. In the latter case, assume without loss of generality that the

K2,3-subdivision is extended from the edge(ck, ck−1) into the firstck ck−1 path. Then by the structure of

K2,3-subdivision and thedfs tree, it is easily verified that theK2,3-subdivision cannot be extended into the

secondck ck−1 path. Hence, the edge(ck, ck−1) can be replaced by the secondck ck−1 path, resulting

in aK2,3-subdivision ofBk. Let e be the child edge ofck−1 on the secondck ck−1 path. The path can be

determined inO(|V |) time using the back-edgeear(e).

28

7 Recognition of generalized series-parallel graphs

Theorem 7.1. [29] A graph isGSP if and only if its biconnected components areSP graphs.

Theorem 7.1 shows that the problem of recognizing GSP graphscan be reduced to that of recognizing SP

graphs. The idea is to decompose the graphG into its biconnected components, construct a decomposition

tree for each biconnected component usingAlgorithm SP&Outerplanar, and then connect the decompo-

sition trees using theSC or DC operation to form a GSP decomposition tree ofG. First, we shall give a

high-level description of the algorithm.

The depth-first-search-based algorithm for biconnectivity [23] is used to decompose the graphG into its

biconnected components and determine its cut-vertices. For each biconnected component, let itsroot vertex

be the cut-vertex through which thedfs enters the biconnected component, or the rootr of the depth-first

search tree if the biconnected component containsr. The biconnected components with their respective root

vertex are added to a queueQ in the order they are generated. Clearly, the one containingr is entered last.

If the biconnected components (cut-vertices) form a chain as discussed in Section 6.2, a flagSP is set

to true to indicate that;SP is set tofalse, otherwise. In the former case, letB′
1, B

′
2, . . . , B

′
h be the order

of the biconnected components inQ, whereB′
1 is the first element (note thatB′

h containsr). Owing to the

nature of depth-first search,B′
1 contains exactly one cut-vertex. LetB′

ℓ be the other biconnected component

containing exactly one cut-vertex. Reverse the order of thebiconnected components inQ starting fromB′
ℓ

to B′
h. Let the resulting ordered list inQ beB1, B2, . . . , Bh. ThenBi andBi+1 shares a unique cut-vertex

ci, 1 ≤ i < h. Let ci+1 be the root vertex ofBi, ℓ ≤ i < h.

Remove the elements fromQ one at a time. LetBi be the biconnected component removed fromQ and

ci be its root vertex. ExecuteAlgorithm SP&Outerplanar onBi to generate a decomposition tree,TBi
, of

Bi as follows:

(a) i = 1: executeAlgorithm SP&Outerplanar onB1, with c1 as source andx as sink, where(c1, x) is

any edge inB1. AttachTB1 to c1.

(b) 1 < i < h: (i) SP ≡ true: TBj
, 1 ≤ j < i, have been constructed and merged into a composition

treeT with sourceci−1 and sinkx via theSC operation. The tree is attached toci−1. ExecuteAlgorithm

SP&Outerplanar onBi ∪ {(ci, ci−1)} with ci as source andci−1 as sink. WhenTBi
is constructed, merge

T with TBi
by SC(TBi

,T) and attach the resulting tree toci. (ii) SP ≡ false: if K4-found ≡ false,

executeAlgorithm SP&Outerplanar onBi ∪ {(ci, x)} with ci as source andx as sink, where(ci, x) is any

29

edge inBi. In the course of generatingTBi
, whenever a cut-vertexc′(6= ci) is encountered, owing to the

properties of depth-first search andQ, the decomposition treeTc′ for all the biconnected components whose

root vertex is a descendent ofc′ must have been constructed and attached toc′.

• c′ is not the sink ofBi: Tc′ is merged with(c′, p(c′))p via DC((c′, p(c′))p,Tc′) (recall thatp(c′) is the

parent ofc′) to form a GSP graph with sourcec′ and sinkp(c′) (Figure 10(a));

• c′ is the sink ofBi: Tc′ is merged withTBi
via SC(TBi

,Tc′) (Figure 10(b)).

v

B
∼

u

B
x

TB
∼

(b) Sv u0

TB

v

B
∼

u

B
xTB

∼

(a) Dw v0

TB

ew vp

c’

w

=

p(c’)=

p(c’)=

c’

w

= Bi Bi

Tw

Tw Tw

xw ••uw ••
TBi

Duw0wv P0

uw •• xw ••

Duw0

Tw

Figure 10: Connecting decomposition trees of biconnected components.

When TBi
is constructed, if there is a decomposition treeT attached toci, mergeT with TBi

by

DC(T ,TBi
) and attach the resulting tree toci. Otherwise, just attachTBi

to ci.

(c) i = h: (i) SP ≡ true: executeAlgorithm SP&Outerplanar onBh, with s′ as source andch−1 as

sink, where(s′, ch−1) is any edge inBh. WhenTBh
is constructed, merge the decomposition treeT attached

to ch−1 with TBh
via SC(TBh

,T). The resulting tree is a GSP decomposition tree ofG. (ii) SP ≡ false:

executeAlgorithm SP&Outerplanar onBh, with r as source andx as sink, where(r, x) is any edge inBh.

Merge decomposition trees attached to its cut-vertices using theSC or DC operation as explained above.

WhenTBi
is constructed, ifr is not a cut-vertex, thenTBi

is a GSP decomposition tree ofG. Otherwise,

merge the decomposition treeT attached tor with TBh
via DC(T ,TBh

). If Q is empty, the resulting tree is

a GSP decomposition tree ofG. Otherwise, attach the resulting tree tor.

The two operations depicted in Figure 10 can be easily incorporated intoAlgorithm SP&Outerplanar

by modifying the statement marked by◮ as follows:

if (v = r) then if (w is a not cut-vertex)then seq := PC((v, w)p, seq) // (v, w)p ∈ Es;
elseseq := SC(PC((v, w)p, seq),Tw) // connectTw to TBi

(= PC((v, w)p, seq)) via SC; (Figure 10(b))
else if(w is not a cut-vertex)then seq := SC(seq, (w, v)p)

elseseq := SC(seq,DC((w, v)p, Tw)); // attachTw to (w, v)p viaDC first, then connectseq; (Figure 10(a))

The decomposition tree is generalized to accommodate theDC operation as follows:

30

• TG is a binary tree with|0‖s|D|t| as the root,TG1 andTG2 as the left and right subtrees, respectively,

if G = DC(G1, G2), wheres is the common source ofG1 andG2, andt is the sink ofG1.

In executingAlgorithm SP&Outerplanar, if aΘci,ci−1

4 -subdivision is detected inBi, SP is set tofalse,

andAlgorithm SP&Outerplanar is reinvoked onBi with ci as source andx (instead ofci−1) as sink such

that(ci, x) is an edge inBi. If a K4-subdivision is detected, execution terminates with theK4-subdivision

returned as a negative certificate confirmingG is not GSP, SP or outerplanar.

The following is the pseudo code of the certifying algorithmfor recognizing GSP, SP and outerplanar

graphs. The statements before therepeat loop are self-explanatory. Therepeat loop runsAlgorithm

SP&Outerplanar on each biconnected componentsBi. Within the loop, thethen part of the firstif statements

deals with the case when it is known thatG is not SP. When aK2,3-subdivision is found inBi, the secondif

statement checks if theK2,3-subdivision contains the edge(ci, ci−1) that is not inBi and replaces that edge

with a path inBi accordingly (see Section 6.3). When aK4-subdivision is found inBi, thethen part of the

third if statement checks if theK4-subdivision is actually aΘ4-subdivision. If noK4-subdivision is found

in Bi, theelsepart attaches the decomposition treeTBi
to ci according to the rules explained above. Theif

statements following therepeat loop generate the certificates.

Algorithm GSP/SP/Outerplanar

Input: The adjacency lists of a connected multigraphG = (V,E).
Output:

{

TBh
(aGSP decomposition tree ofG), if G is generalized series-parallel;

a K4-subdivision of G, if G is not generalized series-parallel,

and

TBh
(aSP decomposition tree ofG), if G is series-parallel;

a K4-subdivision of G, or
a Θ

ci,ci−1

4 -subdivision of G, or
three cut-vertices in a biconnected component ofG, or
a cut vertex in three distinct biconnected components ofG,

if G is not series-parallel,

and

the exterior boundary of an outerplanar embedding ofG, if G is outerplanar;
{

a K4-subdivision of G, or
a K2,3-subdivision of G,

if G is not outerplanar.

begin
Convert the adjacency lists ofG into compact adjacency listsL[w], ∀w ∈ V ;
K4-found := false; K2,3-found := false; SP := true;
Use Tarjan’s algorithm [23] to determine the set of biconnected componentsG and the cut-vertices ofG; thedfs starts fromr;
Insert the biconnected components with their root vertex into a queueQ in the order the biconnected components are generated;
if ((∃B′ ∈ G containing three cut-vertices) ∨ (∃ a cut vertex belonging to three biconnected components inG)) then

SP := false; // G is not series-parallel
Let G = {Bi | 1 ≤ i ≤ h}; // continue to check ifG is GSP or outerplanar

elseorderG as a chainBi, 1 ≤ i ≤ h, in Q such thatBi−1 andBi share a cut-vertexci−1, andci, 1 ≤ i < h, are distinct;
i := 0;
repeat // attempt to generate a GSP decomposition tree forG
i := i+ 1; RemoveBi and its root cut-vertexc from Q;
if (SP ≡ false) then

31

ExecuteAlgorithm SP&Outerplanar on inputBi ∪ {(c, x)} with c as source, for some edge(c, x) of Bi, andc ∈ {ci, r}
else // the biconnected components form a chain

if i = 1 then
ExecuteAlgorithm SP&Outerplanar on inputB1 ∪ {(c1, x)} with c1 as source, for some edge(c1, x) of B1

else ifi = h then
ExecuteAlgorithm SP&Outerplanar on inputBh ∪ {(s′, ch−1)} with ch−1 as sink, for some edge(s′, ch−1) of Bh

elseExecuteAlgorithm SP&Outerplanar on inputBi ∪ {(ci, ci−1)} with ci as source andci−1 as sink;
if ((K2,3-found)∧ ∼ (K4-found)) then // Bi ∪ {(ci, ci−1)} is not outerplanar but SP

if (theK2,3-subdivision,K̃2,3, returned byReport(K2,3) contains(ci, ci−1)) then
if ((ci, ci−1) /∈ E) then // (ci, ci−1) is not an edge inGi

Let ẽ be a child-edge ofci−1 that is not inK̃2,3;
Replace(ci, ci−1) with Pear(ẽ) in K̃2,3; // generate the correctK2,3-subdivision ofBi

if (K4-found) then
if (i /∈ {1, h} ∧ SP) then // check if it is actually aΘ4-subdivision ofBi that is found

if (theK4-subdivision,K̃4, returned byReport(K4) contains edge(ci, ci−1) which is not inBi) then
ReplaceK̃4 with (K̃4\{(ci, ci−1)}); // generateΘ

ci,ci−1

4 -subdivision
K4-found := false; SP := false; i := i− 1; // ProcessBi again with a sinkx where(ci, x) is an edge inBi

else if((ci is a cut-vertex)∧ (there is aT attached toci)) then replaceT with DC(T , TBi
)

elseattachedTBi
to ci;

until ((i = h) ∨K4-found);

if (∼ (K2,3-found ∨K4-found)) then connect the exterior boundary ofBi, 1 ≤ i ≤ h, to form the exterior boundary ofG;

if (K4-found)) then output(theK4-subdivision); //G is not GSP, SP, and OP
else if(SP∧ ∼ K2,3-found) then output(TBh

, the exterior boundary ofG); stop; // G is GSP, SP, and OP
if (SP ∧K2,3-found) then output(TBh

; theK2,3-subdivision); stop; // G is GSP, SP, and not OP
if (∼ SP∧ ∼ K2,3-found) then // G is GSP, OP, and not SP

output(TBh
, the exterior boundary ofG;

theΘ4-subdivision, or
three cut-vertices in a biconnected component, or
a cut vertex in three distinct biconnected components,

); stop;

if (∼ SP ∧K2,3-found) then // G is GSP, not SP and not OP

output(TBh
; theK2,3-subdivision,

theΘ4-subdivision, or
three cut-vertices in a biconnected component, or
a cut vertex in three distinct biconnected components,

); stop;

end.

Algorithm SP&Outerplanar has to be slightly modified as follows: insert the instruction ‘K4-found :=

true’ in between each occurrence ofReport(K4) andstop; removeK2,3-found := false so thatK2,3-

found will not be reset tofalse after aK2,3-subdivision is found.

Theorem 7.2. Algorithm GSP/SP/Outerplanar generates the certificates forG in O(|V |+ |E|) time.

Proof. The correctness of generating the negative certificates indicatingG is not SP before therepeat loop

and of generating the queueQ so thatBi andBi+1 share a unique common cut-vertexci, 1 ≤ i < h, if

SP ≡ true, are obvious. The correctness of therepeat loop generating a decomposition tree ofG if G is

SP or GSP, and the negative certificates ifG is not GSP, SP, or outerplanar is easily verified by inductionon

i based on the correctness ofAlgorithm SP&Outerplanar and Section 6. The correctness of generating the

output by the last twoif statements are also obvious.

Converting the adjacency list ofG into compact adjacency lists takesO(|V | + |E|) time. Since the

size of the compact adjacency-lists structure is bounded byO(|V |), decomposingG into the biconnected

32

components and buildingQ takeO(|V |) time. Generating the two types of negative certificates for SP

graphs before therepeat loop clearly takesO(|V |) time. Therepeat loop takesO(|Ei|) time per iteration

based on Theorems 4.3 and 4.6, Sections 4.3.1, 4.3.2 and 6, whereEi is the edge set ofBi. Therepeat loop

thus takes
∑h

i=1O(|Ei|) = O(|V |) time. The last twoif statements clearly takeO(|V |) time.

Authentication of the GSP decomposition tree is same as thatfor SP graphs except that on encountering

an internal node|0‖s|D|t|, let s− := s− − 1.

For each biconnected componentB, let c be its source andx be its sink. By Section 5.1, after the

traversal backtracked to the root node|0‖c|χ|x| of TB, c− = x+ = 1, c+ = x− = 0 andv− = v+ =

0, v ∈ VB \ {c, x}. Let there beh(> 1) biconnected components withc as source andB be the first one

encountered (the case whereh = 1 is similar but simpler). Their decomposition trees are connected by a

chain ofh − 1 |0‖c|D|x| nodes. At each such node, sincec− = 1 at each child node andc− is decreased

by 1 at the node,c− = 1 when the traversal backtracks from that node. Ifc = r (the root of thedfs tree),

the traversal terminates at the|0‖c|D|x| node encountered last andr− = c− = 1. Clearly,r+ = c+ = 0. If

c 6= r, (a) if c is not a sink, the parent node of the|0‖c|D|x| node encountered last is|0‖c|D|p(c)| and the

sibling is |ℓ‖c|e|p(c)| (Figure 10(a)). Again, asc− = 1 at |0‖c|D|x| and|ℓ‖c|e|p(c)| andc− is decreased

by 1 at |0‖c|D|p(c)|, c− = 1 when the traversal backtracks from|0‖c|D|p(c)|. Sincec is not a sink,

|0‖c|D|p(c)| must have a parent node|0‖y|S|p(c)| and a sibling|k‖y|χ|c|. When the traversal backtracks to

|0‖y|S|p(c)|, c− = c+ = 0 or the certificates is rejected.(b) if c is a sink, let the corresponding source be

c̃(= p(c)). Then, there exists a node|0‖c̃|S|x| with |0‖c̃|P|c| as the left child and|0‖c|χ|x| as the right child

(Figure 10(b)). After the traversal backtracked to node|0‖c̃|S|x|, c− = c+ = 0 or the certificates is rejected.

For each sinkx that is not a cut-vertex,x+ = 1 andx− = 0 remain unchanged. Hence, when the traversal

terminates at the root node|0‖r|χ|t| of the decomposition tree ofG, if (r− = 1 ∧ v− = 0, v ∈ V \ {r})

and (v+ =

1, v is a sink and not a cut-vertex;

0, v is a sink and a cut-vertex.
∧ v+ = 0, v is not a sink), then precede to check if

L̃[v], v ∈ V are adjacent lists ofG as in Section 5.1; reject the certificate, otherwise.

The authentication ofK2,3-subdivision,K4-subdivision,Θ4-subdivision are same as or similar to be-

fore. The authentication of the negative certificates indicatingG has three connected components sharing a

common cut-vertex or a connected component containing three cut-vertices can clearly be done inO(|V |)

time.

33

8 Conclusion

We presented the firstO(|V | + |E|)-time certifying algorithm for determining if a multigraphG = (V,E)

is generalized series-parallel and, if it is, to which subclass of generalized series-parallel graphsG belongs.

The algorithm only makes one pass overG after a preprocessing step. It also generates certificates for

verifying the correctness of the output. We also presented simple authentication algorithms for verifying the

certificates.

Acknowledgement
This research was supported by HK GRF grant HKU7114/13E and HKU Outstanding Researcher Award, HK GRF grant HKU7164/12E,
U of Windsor GRF grant #815160, and NSFC(No. 61433012, U1435215) and Shenzhen Research Grant (KQJSCX20180330170311901,
JCYJ20180305180840138).

The authors thank the first referee for pointing out an error in the first draft.

References
[1] Brehaut W.M., “An efficient outerplanarity algorithm,”Proc. 8th Southeastern Conference on Combinatorics, GraphTheory

and Computing, Baton Rouge, Louisiana, Feb 1977, 99-113.

[2] Corneil D., Dalton B., and Habib M., “LDFS based certifying algorithm for the Minimum Path Cover problem on cocompa-
rability graphs,” SIAM J. Comput., vol.42(3), 792-807 (2013)

[3] Duffin R.J., Topology of series parallel networks, J. Math. Anal. & Appl. vol.10, 303-318 (1965)

[4] Elmasry A., Mehlhorn K., Schmidt J.M., AnO(n + m) Certifying Triconnnectivity Algorithm for Hamiltonian Graphs,
Algorithmica 62(3-4): 754-766 (2012).

[5] Eppstein D., Parallel recognition of series-parallel graphs, Information and Computation, vol.98, 41-55 (1992).

[6] Francis M.C., Hell P., Stacho J., Forbidden structure characterization of circular-arc graphs and a certifying recognition
algorithm, SODA’15, San Diego, CA, Jan 4-6, 2015, 1708-1727.

[7] Fussell D., Ramachandran V., Thurimella R., Finding triconnected components by local replacement, SIAM Journal on
Computing 22(3), 587-616, 1993.

[8] Harary F., Graph Theory, Addison-Wesley, 1969.

[9] Hare E., Hedetniemi S., Larkar R., Peters K., Wimer T., “Linear-time computability of combinatorial problems on generalized
series-parallel graphs,” Discrete algorithms and Complexity, Academic Press, 437-455, (1987).

[10] Hopcroft J. and Tarjan R.E., “Efficient planarity testing,” J. ACM vol.21(4), 549-568 (1974).

[11] Kanevsky A., Ramachandran V., Improved algorithms forgraph four-connectivity, Journal of Computer and System Sciences
42, 288-306, 1991.

[12] Korenblit M., Levit V., On algebaric expressions of series-paralle and Fibonacci graphs, DMTCS 2003, LNCS 2731, 215-224
(2003)

[13] Kratsch D., McConnell R., Mehlhorn K., Spinrad J., Certifying algorithms for recognizing interval graphs and permutation
graphs, SIAM Journal on Computing 36(2), 326-353, 2006.

[14] McConnell R.M., Mehlhorn K., Naher S., and Schweitzer P., Certifying algorithms, Computer Science Review vol.5, 119-161
(2011).

[15] Mehlhorn K., and Naher S., “From algorithms to working programs: On the use of program checking in LEDA,” Proceedings
of the 23rd International Symposium on Mathematical Foundations of Computer Science (MFCS98), 1998, 8493.

[16] Mehlhorn K., Neumann A., and Schmidt J.M., Certifying 3-edge-connectivity, WG2013, LNCS vol.8165, 358-369 (2013).

[17] Mitchell S.L., Linear algorithms to recognize outerplanar and maximal outerplanar graphs, Information Processing Letters,
vol.9(5), 229-232 (1979).

34

[18] Proskurowski A., Sysło M., “Efficient vertex-and edge-coloring of outerplanar graphs,” SIAM Journal on Algebraicand
Discrete Methods, vol.7 131136, (1986).

[19] Reif J.H., “Depth-first search is inherently sequential,” Information Processing Letters, vol.20(5), 229-234 (1985).

[20] Schoenmakers B., A new algorithm for the recognition ofseries parallel graphs, CWI Report CS-R9504, January (1995).

[21] Sysło M.M. and Iri M., “Efficient outerplanarity testing,” Annales Societatis Mathematicae Polonae Series IV: Fundamenta
Informaticae II, 261-275 (1979).

[22] Takamizawa K., Nishizeki T., Saito N., “Linear-time computability of combinatorial problems on series-parallelgraphs.”
Journal of the ACM. 29(3), 623641 (1982).

[23] Tarjan R.E., Depth-first search and linear graph algorithms, SIAM J. Comput. 1(2), 146-160 (1972)

[24] Tsin Y.H., Recognizing and embedding outerplanar distributed computer networks, CyberC 2011, IEEE, Beijing, China, Oct
10-12, 2011, 212-219.

[25] Tsin Y.H., A simple certifying algorithm for 3-edge-connectivity, CoRR abs/2002.04727 (Feb 11, 2020).

[26] Valdes, J., Tarjan, R.E. and Lawler, E., The recognition of series parallel digraphs, SIAM J. Comput 11(2), 298-313(1982)

[27] Wiegers, M., “Recognizing outerplanar graphs in linear time,” Proc. WG86, Bernried, Germany, LNCS vol. 246, Springer
Verlag, 165-176 (1987).

[28] Whitney H.,Non-separable and planar graphs, Transactions of the American Mathematical Society vol.34, 339-362 (1932)

[29] Wimer T.V., Hedetniemi S.T., K-terminal recursive families of graphs, Congressus Numerantium 63, 161-176 (1988).

35

